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Motivation

• Sophisticated, 
complex

• Various of different 
developers

• Native Code

Large attack surface for runtime attacks
[Úlfar Erlingsson, Low-level Software Security: Attacks and Defenses, TR 2007]



Introduction

 Vulnerabilities

 Programs continuously suffer from program bugs, e.g., a 
buffer overflow

 Memory errors

 CVE statistics; zero-day

 Runtime Attack

 Exploitation of program vulnerabilities to perform 
malicious program actions

 Control-flow attack; runtime exploit

In this tutorial



Three Decades of Runtime Attacks

Morris Worm
1988

Code 
Injection

AlephOne
1996

return-into-
libc

Solar Designer
1997

Borrowed 
Code Chunk 
Exploitation

Krahmer
2005

Return-oriented 
programming

Shacham
CCS 2007

Continuing Arms 
Race

…



Are these attacks relevant?



Relevance and Impact

• Web browsers repeatedly exploited in pwn2own contests

• Zero-day issues exploited in Stuxnet/Duqu [Microsoft, BH 2012]

• iOS jailbreak

High Impact of Attacks

• Microsoft EMET (Enhanced Mitigation Experience Toolkit) 
includes a ROP detection engine

• Microsoft Control Flow Guard (CFG) in Windows 10

• Google‘s compiler extension VTV (vitual table verification)

Industry Efforts on Defenses

• A large body of recent literature on attacks and defenses

Hot Topic of Research



Stagefright [Drake, BlackHat 2015]

These issues in Stagefright code critically expose 95% of 
Android devices, an estimated 950 million devices
Zimperium Blog

Adversary

Process Memory
Android 4.0.1

libStagefright

Application

Non-
randomized

Code

MMS

ROP Exploit



But runtime exploits have also some 
“good” side-effects



Apple iPhone Jailbreak
Disable signature verification and escalate privileges to root

Request
http://www.jailbreakme.com/_
/iPhone3,1_4.0.pdf

1) Exploit PDF Viewer Vulnerability by means of 
Return-Oriented Programming

2) Start Jailbreak

3) Download required system files

4) Jailbreak Done



Outline of This Lecture

• What is a runtime attack?

• Why today‘s attacks use code reuse?

BASICS

• What is return-oriented programming (ROP) and how 
does it work?

CODE-REUSE ATTACKS

• Can code randomization (ASLR) help?

• How do control-flow integrity (CFI) solutions such as 
Microsoft EMET or kBouncer aim at preventing ROP?

• Can the latest CFI solutions be bypassed? What‘s next?

CURRENT SECURITY RESEARCH



BASICS
What is a runtime attack ?



Big Picture: Program Compilation

Source Code
C

COPY ( buffer[8], *usr_input )

Compile

Executable
binary

mov reg0[0-3], reg1[0-3]

mov reg0[4-n], reg1[4-n]

reg0

reg1

buffer[8]

usr_inputusr_inputusr_input



Big Picture: Program Execution (1/3)
MEMORY - RAM

DATA

CODE

Initialize buffer[8]

Get usr_input

COPY (buffer[8], *usr_input)

usr_input[0-3]:

usr_input[4-7]:

usr_input[8-11]:

buffer[0-3]:

buffer[4-7]:

POINTER:

…

00000000

00000000

00000000

00000000

00000000

8000ABCD

…

Executable
binary

AAAAAAAABBBBBBBB

CCCCCCCC



Big Picture: Program Execution (2/3)
MEMORY - RAM

DATA

CODE

Initialize buffer[8]

Get usr_input

COPY (buffer[8], *usr_input)

usr_input[0-3]:

usr_input[4-7]:

usr_input[8-11]:

buffer[0-3]:

buffer[4-7]:

POINTER:

…

00000000

00000000

00000000

00000000

00000000

8000ABCD

…

Executable
binary

AAAAAAAA

BBBBBBBB

CCCCCCCC



Big Picture: Program Execution (3/3)
MEMORY - RAM

DATA

CODE

Initialize buffer[8]

Get usr_input

COPY (buffer[8], *usr_input)

usr_input[0-3]:

usr_input[4-7]:

usr_input[8-11]:

buffer[0-3]:

buffer[4-7]:

POINTER:

…

00000000

00000000

00000000

00000000

00000000

8000ABCD

…

Executable
binary

AAAAAAAA

BBBBBBBB

CCCCCCCC

AAAAAAAA

BBBBBBBB

CCCCCCCC



Observations

 There are several observations

1. A programming error leads to a program-flow 
deviation

2. Missing bounds checking

 Languages like C, C++, or assembler do not automatically 
enforce bounds checking on data inputs

3. An adversary can provide inputs that influence the 
program flow

 What are the consequences?



General Principle of Code Injection Attacks

ENTRY
asm_ins, …
EXIT

Basic Block (BBL) A

A

C B

ENTRY
asm_ins, …
EXIT

BBL B

D

Control-Flow 
Graph (CFG)

1 Buffer overflow

2 Code Injection3 Control-flow 
deviation

Data flows

Program flows



General Principle of Code Reuse Attacks

ENTRY
asm_ins, …
EXIT

Basic Block (BBL) A

A

C B

ENTRY
asm_ins, …
EXIT

BBL B

Control-Flow 
Graph (CFG)

1 Buffer overflow

Data flows

Program flows

2

Control-flow 
deviation



Code Injection vs. Code Reuse

 Code Injection – Adding a new node to the CFG

 Adversary can execute arbitrary malicious code

 open a remote console (classical shellcode)

 exploit further vulnerabilities in the OS kernel to install a 
virus or a backdoor

 Code Reuse – Adding a new path to the CFG

 Adversary is limited to the code nodes that are available 
in the CFG

 Requires reverse-engineering and static analysis of the 
code base of a program



BASICS
Code injection is more powerful;

so why are attacks today 
typically using code reuse? 



DATA Memory
readable and writeable

CODE Memory
readable and executable

Data Execution Prevention (DEP)
 Prevent execution from a writeable memory (data) area

A

C B

D

Memory Access 
Violation



Data Execution Prevention (DEP) cntd.

 Implementations

 Modern OSes enable DEP by default (Windows, Linux, 
iOS, Android, Mac OSX)

 Intel, AMD, and ARM feature a special No-Execute bit to 
facilitate deployment of DEP

 Side Note

 There are other notions referring to the same principle

 W ⊕ X – Writeable XOR eXecutable

 Non-executable memory



Hybrid Exploits (1/3)

 Today‘s attacks combine code reuse with code injection

CODE Memory I
readable and executable

Executable

DATA Memory
readable and writeable

CODE Memory II (Libraries)
readable and executable

AllocateMemory()

CopyMemory()

ChangePermission()

DATA Memory
readable and writeable

1

2

Malicious 
Code

Malicious 
Code



Hybrid Exploits (2/3)

 Today‘s attacks combine code reuse with code injection

CODE Memory I
readable and executable

Executable

DATA Memory
readable and writeable

CODE Memory II (Libraries)
readable and executable

AllocateMemory()

CopyMemory()

ChangePermission()

DATA Memory
readable and writeable

3

Malicious 
Code

Malicious 
Code

Malicious 
Code



Hybrid Exploits (3/3)

 Today‘s attacks combine code reuse with code injection

CODE Memory I
readable and executable

Executable

DATA Memory
readable and writeable

CODE Memory II (Libraries)
readable and executable

AllocateMemory()

CopyMemory()

ChangePermission()

CODE Memory
readable and executable

4

Malicious 
Code

Malicious 
Code

Malicious 
Code



CODE-REUSE ATTACKS
What is ROP and how does it work? 



The Big Picture

n mmo r ien ted Pro g ra ingrutRe



Selected background on ARM registers,
stack layout, and calling convention



ARM Overview

 ARM stands for Advanced RISC Machine

 Main application area: Mobile phones, smartphones 
(Apple iPhone, Google Android), music players, tablets, 
and some netbooks

 Advantage: Low power consumption

 Follows RISC design

 Mostly single-cycle execution

 Fixed instruction length

 Dedicated load and store instructions

 ARM features XN (eXecute Never) Bit



ARM Overview
 Some features of ARM

 Conditional Execution

 Two Instruction Sets
 ARM (32-Bit)

 The traditional instruction set

 THUMB (16-Bit)
 Suitable for devices that provide limited memory space

 The processor can exchange the instruction set on-the-fly

 Both instruction sets may occur in a single program

 3-Register-Instruction Set
 instruction destination, source, source

ADD r0,r1,r2 r0 r1 r2= +



ARM Registers
 ARM‘s 32 Bit processor features 16 registers

 All registers r0 to r15 are directly accessible

r3

r2

r1

r0

r4

r5

r6

r7

r8

r9

r10

r11
cpsr

r12/ip

r13/sp

r14/lr

r15/pc

Function 
arguments and 

results from 
function

(caller-save)

Register
variables

(callee-save)

Intra Procedure Call Register

Stack Pointer

Link Register

Program Counter

Control Program Status Register

Holds Return Address

Sometimes used for long jumps, i.e., 
branches that require the full ARM 32 

Bit address space

Next address of instruction
to be executed

Holds Top Address of
the Stack

Status Register: e.g., 
Carry Flag



ARM Stack Layout

Stack Pointer (sp)

Function
Arguments

Return Address

Saved Frame PointerStack 
Frame

High Addresses

Low Addresses

Stack grows 
downwards

* Note that a subroutine does not always store all callee-save registers (r4 to r11); instead it stores
those registers that it really uses/changes

Callee-Save
Registers*

Local Variables

Frame Pointer
(r7 or r11)

The first four arguments are passed
via r0 to r3. This area is only used if

more than four 4-Byte arguments are
expected, or when the callee needs to

save function arguments



Function Calls on ARM

 Branches to addr, and
stores the return address
in link register lr/r14

 The return address is
simply the address that
follows the BL instruction

BL addr BLX addr|reg

 Branches to addr|reg, and
stores the return address
in lr/r14

 This instruction allows the
exchange between ARM 
and THUMB

 ARM->THUMB: LSB=1

 THUMB->ARM: LSB=0

Branch with Link
Branch with Link and 

eXchange instruction set



Function Returns on ARM

 Branches to the return 
address stored in the link 
register lr

 Register-based return for
leaf functions

BX lr POP {pc}

 Pops top of the stack into
the program counter
pc/r15

 Stack-based return for
non-leaf functions

Branch with eXchange
instruction set



THUMB Example for Calling Convention
 Function Call: BL Function_A

 The BL instruction automatically loads the 
return address into the link register lr

 Function Prologue 1: PUSH {r4,r7,lr}
 Stores callee-save register r4, the frame 

pointer r7, and the return address lr on 
the stack

 Function Prologue 2: SUB sp,sp,#16
 Allocates 16 Bytes for local variables on 

the stack

 Function Body: Instructions, …
 Function Epilogue 2: ADD sp,sp,#16

 Reallocates the space for local variables

 Function Epilogue 2: POP {r4,r7,pc}
 The POP instruction pops the callee-save 

register r4, the saved frame pointer r7, 
and the return address off the stack which 
is loaded it into the program counter pc

 Hence, the execution will continue in the
main function

Code

Instruction, …
BL Function_A
Instruction, …

<main>:

PUSH {r4,r7,lr}

<Function_A>:

Stack

sp

SUB sp,sp,#16

Instruction, …
ADD sp,sp,#16
POP {r4,r7,pc}

Return Address lr

SFP (r7)

r4

16 Bytes for
local variables



General System and Application Programming Registers
General-Purpose Registers Bit 0Bit 31

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP

EFLAGS

EIP

Program Status and Control Register

Instruction Pointer

32-bit pointer to the next instruction to be executed

status of the program being executed
(e.g., carry, parity, zero, overflow flag)

Stack Pointer

Base Pointer  (Pointer to data on the stack)

Destination index pointer for string operations

Source index pointer for string operations

Data register: I/O Pointer

Counter register:  counter for loop/string operations

Base Register: base pointer for memory access

Accumulator Register

Source: Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 1: Basic Architecture
http://download.intel.com/products/processor/manual/253665.pdf

http://download.intel.com/products/processor/manual/253665.pdf


Stack Frame
Each function is associated with one stack frame on the stack

Stack Pointer (ESP)

Function
Arguments

Return Address

Saved Base Pointer

Stack 
Frame

High Addresses

Low Addresses

Stack grows 
downwards

Local Variables

Base Pointer (EBP)

The EBP register is used to 
reference function 

arguments and local 
variables 

The ESP register holds the 
stack pointer and always 
points to the last element

on the stack

Stack



Calling Convention (on Intel x86)
 Function call performed via 

the x86 CALL instruction

 E.g., CALL Function_A

 The CALL instruction 
automatically pushes the 
return address on the stack, 
while the return address 
simply points to the 
instruction preceding the call

Code

Instruction, …
CALL Function_A
Instruction, …

<main>:

Instruction, …
RET

<Function_A>:

Stack

ESP

…

Return Address



Calling Convention (on Intel x86)
 Function return is performed 

via the x86 RET instruction

 The RET instruction pops the 
return address off the stack 
and loads it into the 
instruction pointer (EIP)

 Hence, the execution will 
continue in the main 
function

Code

Instruction, …
CALL Function_A
Instruction, …

<main>:

Instruction, …
RET

<Function_A>:

Stack

…

Return Address
ESP



Code

Stack

Function Arguments

Return Address

Function Prologue and Epilogue by Example

<Function_A>:

Function Prologue
Instruction, …
Function Epilogue

Store Base Pointer (EBP) of 
caller on stack (Field: Saved 
Base Pointer)

Initialize new Base Pointer

Reserve space for local 
variables (here: 16 Bytes)

Set Stack Pointer (ESP) to the 
location where the Saved 
Base Pointer is stored

Load Saved Based Pointer to 
the Base Pointer Register

Issue return to caller

PUSH %ebp
MOV %ebp,%esp

<Function_A>:

SUB %esp, 16
Instruction, …
MOV %esp,%ebp
POP %ebp
RET

Saved Base Pointer

Local Variables
ESP

EBP

Assembler Notation: Destination Register is the first operand
- e.g., MOV %ebp,%esp moves the value of ESP to register EBP



Let‘s go back to runtime attacks



Running Example



Launching a code injection attack
against the vulnerable program



Call to subroutine echo()

Code

Stack

Program Memory

Adversary

Instruction, …
CALL echo()
Instruction, …
CALL printf(), …

<main>:



CALL instruction pushes return address onto the Stack

Code

Stack

Program Memory

Adversary

Instruction, …
CALL echo()
Instruction, …
CALL printf(), …

Return Address
ESP

<main>:

Function Prologue
CALL gets(buffer), …
RET

<echo>:



Function prologue of echo() gets executed

Code

Stack

Program Memory

Adversary

Instruction, …
CALL echo()
Instruction, …
CALL printf(), …

Return Address
Saved Base Pointer

Local Buffer 
Buffer[80]

ESP

<main>:

Function Prologue
CALL gets(buffer), …
RET

<echo>:



Subroutine call to gets()

Code

Stack

Program Memory

Corrupt Control

Structures

Adversary

Instruction, …
CALL echo()
Instruction, …
CALL printf(), …

Return Address
Saved Base Pointer

Local Buffer 
Buffer[80]

ESP

SHELLCODE

PATTERN
NEW RETURN ADDR

<main>:

Function Prologue
CALL gets(buffer), …
RET

<echo>:



Code

Stack

Program Memory

Adversary

Instruction, …
CALL echo()
Instruction, …
CALL printf(), …

Return Address
Saved Base Pointer

Local Buffer 
Buffer[80]

ESP

SHELLCODE

PATTERN
NEW RETURN ADDR

echo() now
returns!

<main>:

Function Prologue
CALL gets(buffer), …
RET

<echo>:



Code

Stack

Program Memory

Adversary

Instruction, …
CALL echo()
Instruction, …
CALL printf(), …

Return Address
Saved Base Pointer

Local Buffer 
Buffer[80]

SHELLCODE

PATTERN
NEW RETURN ADDR

Shellcode
executes

<main>:

Function Prologue
CALL gets(buffer), …
RET

<echo>:

ESP



Code Injection on ARM

 Same attack strategy

 Implementation differences

 BLX/BL instruction used for function call

 Function prologue pushes the return address and the
callee-save registers on the stack



Code-Reuse Attacks



It started with return-into-libc

 Basic idea of return-into-libc

 Redirect execution to functions in shared 
libraries

 Main target is UNIX C library libc

 Libc is linked to nearly every Unix program

 Defines system calls and other basic facilities such 
as open(), malloc(), printf(), system(), execve(), 
etc.

 Attack example: system (“/bin/sh”), exit()

http://insecure.org/sploits/linux.libc.return.lpr.sploit.html


Stack

Program Memory

Adversary

Instruction, …
CALL echo()
Instruction, …

<main>:

Function Prologue
CALL gets(buffer), …
RET

<echo>:

Environment Variables
$SHELL = "/bin/sh"

Function Prologue
Instruction, …
RET

<system>:

HALT Program
<exit>:

Program Code Library Code

Inject environment 
variable



Stack

Program Memory

Adversary

Instruction, …
CALL echo()
Instruction, …

<main>:

Function Prologue
CALL gets(buffer), …
RET

<echo>:

Environment Variables
$SHELL = "/bin/sh"

Function Prologue
Instruction, …
RET

<system>:

HALT Program
<exit>:

Program Code Library Code

Return Address
ESP



Stack

Program Memory

Adversary

Instruction, …
CALL echo()
Instruction, …

Return Address
Saved Base Pointer

Local Buffer 
Buffer[80]

ESP

<main>:

Function Prologue
CALL gets(buffer), …
RET

<echo>:

Environment Variables
$SHELL = "/bin/sh"

Function Prologue
Instruction, …
RET

<system>:

HALT Program
<exit>:

Program Code Library Code



Stack

Program Memory

Adversary

Instruction, …
CALL echo()
Instruction, …

Return Address
Saved Base Pointer

Local Buffer 
Buffer[80]

ESP

<main>:

Function Prologue
CALL gets(buffer), …
RET

<echo>:

Environment Variables
$SHELL = "/bin/sh"

Function Prologue
Instruction, …
RET

<system>:

HALT Program
<exit>:

Program Code Library Code

Corrupt Control

Structures



Stack

Program Memory

Adversary

Instruction, …
CALL echo()
Instruction, …

Return Address
Saved Base Pointer

Local Buffer 
Buffer[80]

ESP

<main>:

Function Prologue
CALL gets(buffer), …
RET

<echo>:

Environment Variables
$SHELL = "/bin/sh"

Function Prologue
Instruction, …
RET

<system>:

HALT Program
<exit>:

Program Code Library Code

Corrupt Control

Structures

Pointer to $SHELL
Pointer to exit()

Pointer to system()
PATTERN 2

PATTERN 1



Stack

Program Memory

Adversary

Instruction, …
CALL echo()
Instruction, …

Return Address
Saved Base Pointer

Local Buffer 
Buffer[80]

<main>:

Function Prologue
CALL gets(buffer), …
RET

<echo>:

Environment Variables
$SHELL = "/bin/sh"

Function Prologue
Instruction, …
RET

<system>:

HALT Program
<exit>:

Program Code Library Code

Pointer to $SHELL
Pointer to exit()

Pointer to system()
PATTERN 2

PATTERN 1

echo() now
returns!

ESP



Stack

Program Memory

Adversary

Instruction, …
CALL echo()
Instruction, …

Return Address
Saved Base Pointer

Local Buffer 
Buffer[80]

<main>:

Function Prologue
CALL gets(buffer), …
RET

<echo>:

ESP

Environment Variables
$SHELL = "/bin/sh"

Pointer to $SHELL
Pointer to exit()

Pointer to system()
PATTERN 2

PATTERN 1

Function Prologue
Instruction, …
RET

<system>:

HALT Program
<exit>:

Program Code Library Code



Stack

Program Memory

Adversary

Instruction, …
CALL echo()
Instruction, …

Return Address
Saved Base Pointer

Local Buffer 
Buffer[80]

<main>:

Function Prologue
CALL gets(buffer), …
RET

<echo>:

Environment Variables
$SHELL = "/bin/sh"

Pointer to $SHELL
Pointer to exit()

Pointer to system()
PATTERN 2

PATTERN 1

Function Prologue
Instruction, …
RET

<system>:

HALT Program
<exit>:

Program Code Library Code

ESP
Saved Base Pointer



Stack

Program Memory

Adversary

Instruction, …
CALL echo()
Instruction, …

Return Address
Saved Base Pointer

Local Buffer 
Buffer[80]

<main>:

Function Prologue
CALL gets(buffer), …
RET

<echo>:

Environment Variables
$SHELL = "/bin/sh"

Pointer to $SHELL
Pointer to exit()

Pointer to system()
PATTERN 2

PATTERN 1

Function Prologue
Instruction, …
RET

<system>:

HALT Program
<exit>:

Program Code Library Code

ESP
Saved Base Pointer

system (‘‘/bin/sh‘‘)



Stack

Program Memory

Adversary

Instruction, …
CALL echo()
Instruction, …

Return Address
Saved Base Pointer

Local Buffer 
Buffer[80]

system (‘‘/bin/sh‘‘) 
returning

<main>:

Function Prologue
CALL gets(buffer), …
RET

<echo>:

ESP

Environment Variables
$SHELL = "/bin/sh"

Pointer to $SHELL
Pointer to exit()

Pointer to system()
PATTERN 2

PATTERN 1

Function Prologue
Instruction, …
RET

<system>:

HALT Program
<exit>:

Program Code Library Code

Saved Base Pointer



Stack

Program Memory

Adversary

Instruction, …
CALL echo()
Instruction, …

Return Address
Saved Base Pointer

Local Buffer 
Buffer[80]

Program
terminates

<main>:

Function Prologue
CALL gets(buffer), …
RET

<echo>:

Environment Variables
$SHELL = "/bin/sh"

Pointer to $SHELL
Pointer to exit()

Pointer to system()
PATTERN 2

PATTERN 1

Function Prologue
Instruction, …
RET

<system>:

HALT Program
<exit>:

Program Code Library Code

Saved Base Pointer

ESP



return-into-libc on ARM
 The first four function arguments

are passed via registers

 Hence, how do we initialize the
arguments before calling
system() ?
 We return to an instruction

sequence that loads the argument
from the stack

Code

Instruction, …
BL Function_A
Instruction, …

<system>:

<helper_function>:

Stack

sp

Instruction, …
POP {r0}
POP {pc}

Pointer to system

Pointer to $SHELL

Pointer to helper

Overflown Buffer

Environment Variables
$SHELL = "/bin/sh"



Limitations

 No branching, i.e., no arbitrary code execution

 Critical functions can be eliminated or wrapped



Generalization of return-into-libc 
attacks:

return-oriented programming (ROP)
[Shacham, ACM CCS 2007]



ROP Adversary Model/Assumption

Data Area

Code Area

Application Gadget Space
(e.g., Shared 

Libraries)

MEMORY
Application Address Space

Shared 
Libraries

MOV

ADD

ESP

CALL

LNOP

XOR

LOAD

STORE

ROP 
Payload 3

2 Adversary knows the memory 
layout (memory disclosure)

4
Adversary can write ROP payload 
in the data area (stack/heap)

1 Adversary can 
hijack control-flow 
(buffer overflow)

Adversary can construct 
gadgets



ROP Attack Technique: Overview

Program Stack

Return Address 1

Return Address 2

Value 1

Value 2

Return Address 3

Program Code

REG1:

REG2: Value 2

Value 1

Sequence 1

asm_ins
POP {PC}

Sequence 2

POP REG1
POP REG2
POP {PC}

Sequence 3

asm_ins
POP {PC}

SP

Corrupt Control

Structures

...



Summary of Basic Idea
 Perform arbitrary computation with return-into-libc

techniques

 Approach
 Use small instruction sequences (e.g., of libc) instead of 

using whole functions

 Instruction sequences range from 2 to 5 instructions

 All sequences end with a return (POP{PC}) instruction

 Instruction sequences are chained together to a gadget

 A gadget performs a particular task (e.g., load, store, xor, 
or branch)

 Afterwards, the adversary enforces his desired actions by 
combining the gadgets



Special Aspects of ROP



Code Base and Turing-Completeness

GADGET SPACE

Application
Code

Shared
Libraries

MOV

Arith.

CALL

Cond. 
JMP

LOADSTORE
Logic.

Uncond. 
JMP

Turing-complete language

MandatoryOptional

Static Analysis



Gadget Space on Different Architectures

B8 13 00 00 00 E9 C3 F8 FF FF

00 00 00 E9 C3

mov $0x13,%eax

jmp 3aae9

add %al,(%eax)

add %ch,%cl

ret

Intended Code

Unintended Code

GADGET SPACE
GADGET 
SPACE

Architectures with memory
alignment, e.g., SPARC, ARM

Architectures with no memory
alignment, e.g., Intel x86



Stack Pivot
[Zovi, RSA Conference 2010]

 Stack pointer plays an important role

 It operates as an instruction pointer in ROP attacks

 Challenge

 In order to launch a ROP exploit based on a heap 
overflow, we need to set the stack pointer to point to the 
heap

 This is achieved by a stack pivot



Stack Pivot in Detail

Heap

Return Address 1

Return Address 2

Return Address 3

Stack

TOP of StackSP

Function Ptr

Code

MOV SP, REG1*

POP {PC}

Stack Pivot

label_pivot:

label_pivot

*REG1 is controlled by the adversary and holds beginning of ROP payload



ROP Variants

 Motivation: return address protection (shadow stack)

 Validate every return (intended and unintended) against 
valid copies of return addresses
[Davi et al., AsiaCCS 2011]

 Exploit indirect jumps and calls

 ROP without returns
[Checkoway et al., ACM CCS 2010]



CURRENT RESEARCH



1997

2001

2005

2007

2008

2009

2010

2011/
2012

2013

2014

ret2libc
Solar Designer

Advanced ret2libc
Nergal

Borrowed Code Chunk Exploitation
Krahmer

ROP on x86
Shacham (CCS)

ROP on SPARC
Buchanan et al (CCS)

ROP on Atmel AVR
Francillon et al (CCS)

ROP Rootkits
Hund et al (USENIX)

ROP on PowerPC
FX Lindner (BlackHat)

ROP on ARM/iOS
Miller et al (BlackHat)

ROP without Returns
Checkoway et al (CCS)

Practical ROP
Zovi (RSA Conference)

Pwn2Own (iOS/IE)
Iozzo et al / Nils

JIT-ROP
Snow et al (IEEE S&P)

Blind ROP
Bittau et al (IEEE S&P)

Out-Of-Control
Göktas et al (IEEE S&P)

Stitching Gadgets
Davi et al (USENIX)

ROP is Dangerous
Carlini et al (USENIX)

Flushing Attacks
Schuster et al (RAID)

Real-World Exploits

SELECTED



Our Work & Involvement
 Attacks

 Return-Oriented Programming without Returns 
[CCS 2010]

 Privilege Escalation Attacks on Android [ISC 2010]
 Just-In-Time Return-oriented Programming (JIT-ROP)

[IEEE S&P 2013, Best Student Paper] & [BlackHat USA 2013]
 Stitching the Gadgets [USENIX Security 2014] & [BlackHat USA 2014]
 COOP [IEEE Security & Privacy 2015]
 Losing Control [CCS 2015]

 Detection & Prevention
 ROPdefender [AsiaCCS 2011]
 Mobile Control-Flow Integrity (MoCFI) [NDSS 2012]
 XIFER: Fine-Grained ASLR [AsiaCCS 2013]
 Filtering ROP Payloads [RAID 2013]
 Isomeron [NDSS 2015]
 Readactor [IEEE Security & Privacy 2015]
 HAFIX: Fine-Grained CFI in Hardware [DAC 2014, DAC 2015]
 Readactor++ [CCS 2015]

In this lecture



Main Defense Techniques
(Fine-grained) Code 

Randomization
[Cohen 1993 & Larsen et al., SoK IEEE 

S&P 2014]

Control-Flow Integrity 
(CFI)

[Abadi et al., CCS 2005 & 
TISSEC 2009]

A

B

DC

E F

Label_1

Label_2

Label_3

Label_4Label_3

Label_3

A

B

DC

E F

Memory

A

B

C

E

D

F
Memory (randomized)

D

A

E

F

B

C

Exit(B) == Label_3



ASLR – Address Space Layout Randomization



Basics of Code Randomization
 ASLR randomizes the base address of code/data segments

Program Memory

Heap

Library (e.g., libc)

Stack

Application Run 1

Program Memory 

Heap

Stack

Application Run 2

Library (e.g., libc)

Executable Executable

Brute-Force Attack 
[Shacham et al., ACM 

CCS 2004]

Guess Address 
of Library 
Function



Basics of Memory Randomization
 ASLR randomizes the base address of code/data segments

Program Memory

Heap

Library (e.g., libc)

Stack

Application Run 1

Program Memory

Heap

Stack

Application Run 2

Library (e.g., libc)

Executable
Executable

Disclosure Attack
e.g., [Sotirov et al., 

Blackhat 2008]

1. Exploit disclosure 
vulnerability

2. Retrieve 
runtime ADDR 

address

3. Revert all library 
addresses based on ADDR



Fine-Grained ASLR

 ORP [Pappas et al., IEEE S&P 2012]: Instruction reordering/substitution 
within a BBL

 ILR [Hiser et al., IEEE S&P 2012]: Randomizing each instruction‘s location

 STIR [Wartell et al., ACM CCS 2012] & XIFER [with Davi et al., AsiaCCS 
2013]: Permutation of BBLs

Library (e.g., libc)

Application Run 1

Instruction
Sequence 3

RET

Instruction
Sequence 2

RET

Instruction
Sequence 1

RET

Library (e.g., libc)

Application Run 2

Instruction
Sequence 2

RET

Instruction
Sequence 1

RET

Instruction
Sequence 3

RET



Just-In-Time Code Reuse: On the Effectiveness of Fine-Grained 
Address Space Layout Randomization

IEEE Security and Privacy Best Student Paper 2013
Kevin Z. Snow (UNC Chapel Hill), Lucas Davi, Alexandra 

Dmitrienko, Christopher Liebchen, Fabian Monrose (UNC 
Chapel Hill), Ahmad-Reza Sadeghi

Does Fine-Grained ASLR
Provide a Viable Defense in the Long Run? 



Contributions

A novel ROP attack that undermines
fine-grained ASLR1

We show that memory disclosures are far 
more damaging than previously believed2

A prototype exploit framework that demonstrates 
one instantiation of our idea, called JIT-ROP3



High-Level Idea

Code Page 1 

INS_1

INS_3

INS_4

INS_6

INS_7

INS_5

INS_2

Code Pointer

4KB

Scripting Engine

Page Start

Page End

JMP INS_10



High-Level Idea

Code Page 1 

INS_1

INS_3

INS_4

INS_6

INS_7

INS_5

INS_2

Code Pointer

Scripting Engine

Page End

Disassemble

Code Page 2 

INS_8

INS_10

INS_11

INS_13

INS_14

INS_12

INS_9

JMP INS_10



Applying JIT-ROP to Internet Explorer 8

 We applied JIT-ROP to a real-world vulnerability in IE 8

 CVE-2012-1876: Heap overflow vulnerability

 Within 7 seconds, our attack harvested code pages, 
identified and constructed useful ROP gadgets, and 
finally build and executed the payload

For more evaluation results and 
details check out our paper and
BlackHat USA 2013 slides



Possible Defenses

Execute-only
memory

Software-based: 
Execute-no-Read

[Backes et al., ACM 
CCS 2014]

Hardware-based: 
Readactor

[with Crane et al., 
IEEE S&P 2015]

Execution-path 
randomization

Isomeron

[Davi et al., NDSS 
2015]

Control-flow 
Integrity (CFI)

CFI does not rely 
on any 

randomization key



Control-Flow Integrity (CFI)
[Abadi et al., CCS 2005 & TISSEC 2009]

A general defense against code-reuse attacks

A

B

DC

E F

Label_1

Label_2

Label_3

Label_4Label_3

Label_3

Exit(B) == Label_3



CFI Defense Literatur
2002

2005

2006

2010

2011

2012

2013

2014

Program Shepherding
Kiriansky et al. (USENIX Sec.)

Control-Flow Integrity (CFI) 
Abadi et al. (CCS 2005)

XFI
Abadi et al. (OSDI)

HyperSafe
Wang et al. (IEEE S&P)

CFI and Data Sandboxing
Zeng et al (CCS)

Branch Regulation
Kayaalp et al (ISCA)

Mobile CFI
Davi et al. (NDSS)

Control-Flow Restrictor
Pewny et al (ACSAC)

kBouncer
Pappas et al. (USENIX Sec.)

bin-CFI
Zhang et al. (USENIX Sec.)

ROPecker
Cheng et al. (NDSS)

Modular CFI
Niu et al. (PLDI)

RockJIT
Niu et al. (CCS)

SAFEDISPATCH
Jang et al. (NDSS)

HAFIX
Davi et al. (DAC)

Forward-Edge CFI
Tice et al. (USENIX Sec.)

SELECTED

Architectural Support for CFI
Budiu et al. (ASID)

Control-Flow Locking
Bletch et al. (ACSAC)

CCFIR
Zhang et al. (IEEE S&P)



Which Instructions to Protect?

• Purpose: Return to calling function

• CFI Relevance: Return address located on stackReturns

• Purpose: switch tables, dispatch to library functions

• CFI Relevance: Target address taken from either 
processor register or memory

Indirect 
Jumps

• Purpose: call through function pointer, virtual table calls

• CFI Relevance: Target address taken from either processor 
register or memory

Indirect 
Calls



Label Granularity: Trade-Offs (1/2)

 Many CFI checks are required if unique labels are 
assigned per node

A

B

DC

E F

Label_1

Label_2

Label_4

Label_6Label_5

Label_3

Exit(B) == 
[Label_3, Label_4, Label_5]

CFI Check

Basic Block

Label



Label Granularity: Trade-Offs (2/2)

 Optimization step: Merge labels to allow single CFI check

 However, this allows for unintended control-flow paths

A

B

DC

E F

Label_1

Label_2

Label_4

Label_6Label_5

Label_3

Exit(B) == Label_3

CFI Check

Basic Block

Label

Label_3

Label_3

Exit(C) == Label_3



Label Problem for Returns
 Static CFI label checking 

leads to coarse-grained 
protection for returns

B

R

AA‘ B‘
CALL

RET

Label_1 Label_2
Shadow Stack
Backup storage for 
return addresses

Return Addr A’

Return Addr …

CALL RET

Backup Check

 Shadow stack allows for
fine-grained return
address protection but 
incurs higher overhead

Exit(R) == [Label_1, Label_2]

…



Original CFI: Benefits and Limitations



Hot Research Topic:
“Practical” (coarse-grained) 
Control Flow Integrity (CFI) 

Recently, many solutions proposed

kBouncer
[USENIX Sec’13]

ROPecker
[NDSS’14]

ROPGuard
[Microsoft EMET]

CFI for COTS 
Binaries

[USENIX Sec’13]

CCFIR
[IEEE S&P’13]

MS
BlueHat

Prize

MS
BlueHat

Prize

http://technet.microsoft.com/
en-us/security/jj653751

EMET



Open Question:
Practical and secure mitigation of code 

reuse attacks

Turing-completeness of return-oriented
programming



Negative Result:
All current (published)

coarse-grained CFI solutions can be
bypassed



Big Picture

Systematic Security 
Analysis of Coarse-
Grained CFI

Gadget 
Analysis

Exploit 
Development

Turing-complete 
gadget set

Gadgets to 
bypass heuristics

CFI Policies

Frequency of CFI Checks

Deriving a CFI policy that 
combines all schemes



1. Systematic Security Analysis of
Coarse-Grained CFI



Coarse-grained CFI leads to CFG imprecision

1

2

53

4 6

2

1

11

2 2

Reducing 
number of 

labels

Allowed paths: 1→2 and 2→1



Main Coarse-Grained CFI Policies

 CFI Policy 1: Call-Preceded 
Sequences

 Returns need to target a call-
preceded instruction

 No shadow stack required

 CFI Policy 2: Behavioral-
Based Heuristics

 Prohibit a chain of N short 
sequences each consisting 
of less than S instructions

Application

CALL A

INS_1

INS_2

CALL B

INS_3

CALL C

INS_4

RET > S

< S

< S < S < S

1 2 N

…



Coarse-Grained CFI Proposals

Last Branch 
Record (LBR)

Win API /
Critical Function

Application

POP PUSH

Stack

kBouncer
[USENIX Sec’13]

ROPecker
[NDSS’14]

ROPGuard
[Microsoft EMET]

H
O

O
K

Paging

H
O

O
K

Binary
Instrumentation

CFI for COTS 
Binaries

[USENIX Sec’13]

CCFIR
[IEEE S&P‘13]



Deriving a Combined CFI Policy
CFI Policy kBouncer

[USENIX 
Sec. 2013]

ROPecker
[NDSS 
2014]

ROPGuard
[Microsoft 
EMET]

CFI for COTS 
Binaries
[USENIX 
Sec. 2013]

Combined 
CFI Policy

CFI Policy 1
Call-Preceded Sequences

CFI Policy 2
Behavioral-Based Heuristics

Time of CFI Check WinAPI 2 Page 
Sliding 

Window/
Critical 

Functions

WinAPI/
Critical 

Functions

Indirect
Branch

Any Time

No Restriction CFI Policy

Here only the core policies shown. However, we consider all other 
deployed policies in our analysis.



2. Gadget Analysis



Methodology

Common 
Library

kernel32.dll

Sequence 
Subset 1

Sequence 
Subset n

MOV

ADD

ESP

CALL

LNOP

XOR

Sequence 
Finder (IDA Pro)

List of Call-
Preceded 

Sequences

Sequence Filter
(D Program)

Provide filters on
Reg, Ins, Opnd, Length

Gadget Generation 
(manual)

Search for Gadgets

LOAD

STORE



(Excerpt of) Turing-Complete Gadget Set in 
CFI-Protected kernel32.dll

Gadget Type CALL-Preceded Sequence
ending in a RET instruction

LOAD
Register

EBP := pop ebp
ESI := pop esi; pop ebp
EDI := pop edi; leave
ECX := pop ecx; leave
EBX := pop edi; pop esi; pop ebx; pop ebp
EAX := mov eax,edi; pop edi; leave
EDX := mov eax,[ebp-8]; mov edx,[ebp-4]; pop edi; leave

LOAD/STORE
Memory

LD(EAX) := mov eax,[ebp+8]; pop ebp
ST(EAX) := mov [esi],eax; xor eax,eax; pop esi; pop ebp
ST(ESI) := mov [ebp-20h],esi
ST(EDI) := mov [ebp-20h],edi

Arithmetic/
Logical

ADD/SUB := sub eax,esi; pop esi; pop ebp
XOR := xor eax,edi; pop edi; pop esi; pop ebp

Branches unconditional branch 1 := leave
unconditional branch 2 := add esp,0Ch; pop ebp
conditional LD(EAX) := neg eax; sbb eax,eax; and eax,[ebp-4];        
………………………………………………………….leave



Long-NOP Gadget

ROP 
Gadget 1

Store 
Registers

Prepare
Long NOP

Long 
NOP

Reset
Registers

ROP 
Gadget 2

…

ESI

EDI

EBX

Stack

Static
Constants

Arbitrary Data 
Area (36 Bytes)

ESI

EDI



3. Exploit Development

Adobe Reader 9.1 
CVE-2010-0188 

MPlayer Lite r33064 m3u 
Buffer Overflow Exploit

Original exploits
detected by coarse-

grained CFI

Our instrumented
exploits bypass coarse-

grained CFI



Coarse-Grained CFI: Lessons Learned

1. Too many call sites available

→ Restrict returns to their actual caller (shadow stack)

2. Heuristics are ad-hoc and ineffective

→ Adjusted sequence length leads to high false positive 

3. Too many indirect jump and call targets

 Resolving indirect jumps and calls is non-trivial

→ Compromise: Compiler support 



CURRENT RESEARCH

Stack Attacks



CURRENT RESEARCH
What’s next?

Hardware-Assisted CFI



HAFIX: Hardware-Assisted Flow Integrity 
Extension

DAC 2014 and DAC 2015

Lucas Davi, Matthias Hanreich, Debayan Paul, Ahmad-Reza Sadeghi
(TU Darmstadt)

Patrick Koeberl (Intel Labs)

Orlando Arias, Yier Jin, Dean Sullivan (University of Central Florida)



Why Leveraging Hardware for CFI ? 

 Efficiency

 Dedicated CFI instructions

 Security

 On-chip memory for CFI data

 CFI Context

 No unintended sequences

 Dynamic code protection



Our Objectives
Backward-Edge and 

Forward-Edge CFI
Stateful, Fine-granular 

No burden on developer No code annotations/changes

Security Hardware protection
On-chip memory for CFI Data
No unintended sequences

High performance < 3% overhead 

Enabling technology All applications can use CFI 
features
Support of multitasking 

Compatibility to legacy code CFI and non-CFI code on same 
platform



HAFIX State Model

State 0
Normal Execution

State 1
Function Entry

Direct and 
Indirect Calls

CFIDEL label_1

State 2
Function Exit

CFIBR label_1

CFIRET label_0

CFI Label State

State 3
Attack Detection

STOP Execution

No CFIBR issued

No CFIRET issued or 
inactive label used

Valid CFIBR issued

Valid CFIRET issued

Activate label

Deactivate label

Return

Check label

label_0

label_1



Instrumented Code Example
Program Code

Function A (0025)

Instruction 1

CFIBR 0025

CALL Function B

CFIRET 0025

Instruction 2

CFIDEL 0025; RET

Function B (0099)

Instruction 3

CFIBR 0099

CFIDEL 0099; RET

Function C (0444)

CALL Function X

CFIBR 0444

CFIRET 0444

CFIDEL 0444; RET

CFI Label 
Memory

0025

0099

Activate Label 0025

Activate Label 0099

Deactivate Label 0099

1

3

2

4



Instrumented Code Example
Program Code

Function A (0025)

Instruction 1

CFIBR 0025

CALL Function B

CFIRET 0025

Instruction 2

CFIDEL 0025; RET

Function B (0099)

Instruction 3

CFIBR 0099

CFIDEL 0099; RET

Function C (0444)

CALL Function X

CFIBR 0444

CFIRET 0444

CFIDEL 0444; RET

CFI Label 
Memory

0025

Label 0444 not active
→ Stop execution

Label 0025 active
→ Continue execution

No CFIRET
→ Stop 
execution



Gadget Space compared to Coarse-
Grained CFI for Static Binaries
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On average only 19.82% 
of call sites reachable in 

worst-case scenario



Conclusion

 Code-reuse attacks are prevalent

 Google and Microsoft take these attacks seriously

 Many real-world exploits

 Existing solutions can be bypassed

 Good News

 Many innovative defense techniques have been 
proposed

 Promising new directions

 Memory safety based on code-pointer integrity 
[Kuznetsov et al., OSDI 2014]


