
DAC Tutorial
6 June, Austin, TX, USA

Lucas Davi, Ahmad-Reza Sadeghi

CRISP, Technische Universität Darmstadt

Intel Collaborative Research Institute for Secure
Computing at TU Darmstadt, Germany

Special Session Announcement
 Secure IoT: Utopia, Alchemy, or Possible Future?

 Organizers: Ahmad-Reza Sadeghi (TU Darmstadt) and
Yier Jin (Univ. of Central Florida)

 Chair: Anand Rajan (Intel Corp.)

 Co-Chair: Saverio Fazzari (Booz Allen Hamilton, Inc.)

 THURSDAY June 09, 10:30am - 12:00pm | 18AB

 Talks
 Things, Trouble, Trust: On Building Trust in IoT Systems

 Exploring risk and mapping the Internet of Things with
Autonomous Drones

 Can IoT be Secured: Emerging Challenges in Connecting
the Unconnected

Motivating Problem

• Software increasingly
sophisticated and
complex

• Various developers
involved

• Native Code

• Many program bugs

Large attack surface for runtime exploits on
diverse platforms

Introduction

 Vulnerabilities

 Programs continuously suffer from program bugs, e.g., a
buffer overflow

 Memory errors

 CVE statistics; zero-day

 Runtime Attack

 Exploitation of program vulnerabilities to perform
malicious program actions

 Control-flow attack; runtime exploit

Focus in this
tutorial

Three Decades of Runtime Attacks

Morris Worm
1988

Code
Injection

AlephOne
1996

return-into-
libc

Solar Designer
1997

Borrowed
Code Chunk
Exploitation

Krahmer
2005

Return-oriented
programming

Shacham
CCS 2007

Continuing Arms
Race

…

Are these attacks relevant?

Recent Attacks
Stagefright [Drake, BlackHat 2015]

These issues in Stagefright code
critically expose 95% of Android
devices, an estimated 950 million
devices

Adversary

MMS

Cisco Router Exploit [2016]

Million CISCO ASA Firewalls
potentially vulnerable to
attacks

Relevance and Impact

• Web browsers repeatedly exploited in pwn2own contests

• Zero-day issues exploited in Stuxnet/Duqu [Microsoft, BH 2012]

• iOS jailbreak

High Impact of Attacks

• Microsoft EMET (Enhanced Mitigation Experience Toolkit)
includes a ROP detection engine

• Microsoft Control Flow Guard (CFG) in Windows 10

• Google‘s compiler extension VTV (vitual table verification)

Industry Efforts on Defenses

• A large body of recent literature on attacks and defenses

Hot Topic of Research

But runtime exploits have also some
“good” side-effects

Apple iPhone Jailbreak
Disable signature verification and escalate privileges to root

Request
http://www.jailbreakme.com/_
/iPhone3,1_4.0.pdf

1) Exploit PDF Viewer Vulnerability by means of
Return-Oriented Programming

2) Start Jailbreak

3) Download required system files

4) Jailbreak Done

Tutorial Outline

1. Lecture on Runtime Exploits

 Introduction

 Selected Background on ARM

 Code Injection

 Code-Reuse Attacks

 Modern Defense Techniques and Their Limitations

 Hardware-Assisted Protection Schemes

2. Hands-on Lab (Runtime attacks against Android-ARM)

BASICS
What is a runtime attack ?

Big Picture: Program Compilation

Source Code
C

COPY (buffer[8], *usr_input)

Compile

Executable
binary

mov reg0[0-3], reg1[0-3]

mov reg0[4-n], reg1[4-n]

reg0

reg1

buffer[8]

usr_inputusr_inputusr_input

Big Picture: Program Execution
MEMORY - RAM

DATA

CODE

Initialize buffer[8]

Get usr_input

usr_input[0-3]:

usr_input[4-7]:

usr_input[8-11]:

buffer[0-3]:

buffer[4-7]:

POINTER:

…

00000000

00000000

00000000

00000000

00000000

8000ABCD

…

Executable
binary

Big Picture: Program Execution
MEMORY - RAM

DATA

CODE

Initialize buffer[8]

Get usr_input

usr_input[0-3]:

usr_input[4-7]:

usr_input[8-11]:

buffer[0-3]:

buffer[4-7]:

POINTER:

…

00000000

00000000

00000000

00000000

00000000

8000ABCD

…

Executable
binary

AAAAAAAA

BBBBBBBB

CCCCCCCC

AAAAAAAABBBBBBBB

CCCCCCCC

Big Picture: Program Execution
MEMORY - RAM

DATA

CODE

Initialize buffer[8]

Get usr_input

COPY (buffer[8], *usr_input)

usr_input[0-3]:

usr_input[4-7]:

usr_input[8-11]:

buffer[0-3]:

buffer[4-7]:

POINTER:

…

00000000

00000000

00000000

00000000

00000000

8000ABCD

…

Executable
binary

AAAAAAAA

BBBBBBBB

CCCCCCCC

AAAAAAAA

BBBBBBBB

CCCCCCCC

Observations

 There are several observations

1. A programming error leads to a program-flow
deviation

2. Missing bounds checking

 Languages like C, C++, or assembler do not automatically
enforce bounds checking on data inputs

3. An adversary can provide inputs that influence the
program flow

 What are the consequences?

General Principle of Code Injection Attacks

ENTRY
asm_ins, …
EXIT

Basic Block (BBL) A

A

C B

ENTRY
asm_ins, …
EXIT

BBL B

D

Control-Flow
Graph (CFG)

1 Buffer overflow

2 Code Injection3 Control-flow
deviation

Data flows

Program flows

General Principle of Code Reuse Attacks

ENTRY
asm_ins, …
EXIT

Basic Block (BBL) A

A

C B

ENTRY
asm_ins, …
EXIT

BBL B

Control-Flow
Graph (CFG)

1 Buffer overflow

Data flows

Program flows

2

Control-flow
deviation

Code Injection vs. Code Reuse

 Code Injection – Adding a new node to the CFG

 Adversary can execute arbitrary malicious code

 open a remote console (classical shellcode)

 exploit further vulnerabilities in the OS kernel to install a
virus or a backdoor

 Code Reuse – Adding a new path to the CFG

 Adversary is limited to the code nodes that are available
in the CFG

 Requires reverse-engineering and static analysis of the
code base of a program

BASICS
Code injection is more powerful;

so why are attacks today
typically using code reuse?

DATA Memory
readable and writeable

CODE Memory
readable and executable

Data Execution Prevention (DEP)
 Prevent execution from a writeable memory (data) area

A

C B

D

Memory Access
Violation

Data Execution Prevention (DEP) cntd.

 Implementations

 Modern OSes enable DEP by default (Windows, Linux,
iOS, Android, Mac OSX)

 Intel, AMD, and ARM feature a special No-Execute bit to
facilitate deployment of DEP

 Side Note

 There are other notions referring to the same principle

 W ⊕ X – Writeable XOR eXecutable

 Non-executable memory

Hybrid Exploits

 Today‘s attacks combine code reuse with code injection

CODE Memory I
readable and executable

Executable

DATA Memory
readable and writeable

CODE Memory II (Libraries)
readable and executable

AllocateMemory()

CopyMemory()

ChangePermission()

DATA Memory
readable and writeable

1

2

Malicious
Code

Malicious
Code

Hybrid Exploits

 Today‘s attacks combine code reuse with code injection

CODE Memory I
readable and executable

Executable

DATA Memory
readable and writeable

CODE Memory II (Libraries)
readable and executable

AllocateMemory()

CopyMemory()

ChangePermission()

DATA Memory
readable and writeable

1

2

3

Malicious
Code

Malicious
Code

Malicious
Code

Hybrid Exploits

 Today‘s attacks combine code reuse with code injection

CODE Memory I
readable and executable

Executable

DATA Memory
readable and writeable

CODE Memory II (Libraries)
readable and executable

AllocateMemory()

CopyMemory()

ChangePermission()

CODE Memory
readable and executable

1

2

3

4

Malicious
Code

Malicious
Code

Malicious
Code

Selected background on ARM registers,
stack layout, and calling convention

ARM Overview

 ARM stands for Advanced RISC Machine

 Main application area: Mobile phones, smartphones
(Apple iPhone, Google Android), music players, tablets,
and some netbooks

 Advantage: Low power consumption

 Follows RISC design

 Mostly single-cycle execution

 Fixed instruction length

 Dedicated load and store instructions

 ARM features XN (eXecute Never) Bit

ARM Overview
 Some features of ARM

 Conditional Execution

 Two Instruction Sets
 ARM (32-Bit)

 The traditional instruction set

 THUMB (16-Bit)
 Suitable for devices that provide limited memory space

 The processor can exchange the instruction set on-the-fly

 Both instruction sets may occur in a single program

 3-Register-Instruction Set
 instruction destination, source, source

ADD r0,r1,r2 r0 r1 r2= +

ARM Registers
 ARM‘s 32 Bit processor features 16 registers

 All registers r0 to r15 are directly accessible

r3

r2

r1

r0

r4

r5

r6

r7

r8

r9

r10

r11
cpsr

r12/ip

r13/sp

r14/lr

r15/pc

Function
arguments and

results from
function

(caller-save)

Register
variables

(callee-save)

Intra Procedure Call Register

Stack Pointer

Link Register

Program Counter

Control Program Status Register

Holds Return Address

Sometimes used for long jumps, i.e.,
branches that require the full ARM 32

Bit address space

Next address of instruction
to be executed

Holds Top Address of
the Stack

Status Register: e.g.,
Carry Flag

ARM Stack Layout

Stack Pointer (sp)

Function
Arguments

Return Address

Saved Frame PointerStack

Frame

High Addresses

Low Addresses

Stack grows
downwards

* Note that a subroutine does not always store all callee-save registers (r4 to r11); instead it stores
those registers that it really uses/changes

Callee-Save
Registers*

Local Variables

Frame Pointer

(r7 or r11)

The first four arguments are passed
via r0 to r3. This area is only used if

more than four 4-Byte arguments are
expected, or when the callee needs to

save function arguments

The Stack and Stack Frame Elements
 Stack is a last in, first out (LIFO) memory area where the Stack Pointer points to the

last stored element on the stack
 The stack can be accessed by two basic operations

1. PUSH elements onto the stack (SP is decremented)
2. POP elements off the stack (SP is incremented)

 Stack is divided into individual stack frames
 Each function call sets up a new stack frame on top of the stack
1. Function arguments

 Arguments provided by the caller of the function

2. Callee-save Registers
 Registers that a subroutine (callee) needs to reset before returning to the caller of the

subroutine

3. Return address
 Upon function return control transfers to the code pointed to by the return address (i.e.,

control transfers back to the caller of the function)

4. Saved Frame Pointer/Saved Base Pointer
 Frame pointer/Base pointer of the calling function
 Variables and arguments are accessed via an offset to the frame pointer/base pointer
 Provided in register r11 (ARM code), r7 (THUMB code), or EBP (x86 code)

5. Local variables
 Variables that the called function uses internally

Function Calls on ARM

 Branches to addr, and
stores the return address
in link register lr/r14

 The return address is
simply the address that
follows the BL instruction

BL addr BLX addr|reg

 Branches to addr|reg, and
stores the return address
in lr/r14

 This instruction allows the
exchange between ARM
and THUMB

 ARM->THUMB: LSB=1

 THUMB->ARM: LSB=0

Branch with Link
Branch with Link and

eXchange instruction set

Function Returns on ARM

 Branches to the return
address stored in the link
register lr

 Register-based return for
leaf functions

BX lr POP {pc}

 Pops top of the stack into
the program counter
pc/r15

 Stack-based return for
non-leaf functions

Branch with eXchange
instruction set

THUMB Example for Calling Convention
 Function Call: BL Function_A

 The BL instruction automatically loads the
return address into the link register lr

 Function Prologue 1: PUSH {r4,r7,lr}
 Stores callee-save register r4, the frame

pointer r7, and the return address lr on
the stack

 Function Prologue 2: SUB sp,sp,#16
 Allocates 16 Bytes for local variables on

the stack

 Function Body: Instructions, …
 Function Epilogue 2: ADD sp,sp,#16

 Reallocates the space for local variables

 Function Epilogue 2: POP {r4,r7,pc}
 The POP instruction pops the callee-save

register r4, the saved frame pointer r7,
and the return address off the stack which
is loaded it into the program counter pc

 Hence, the execution will continue in the
main function

Code

Instruction, …
BL Function_A
Instruction, …

<main>:

PUSH {r4,r7,lr}

<Function_A>:

Stack

SUB sp,sp,#16

Instruction, …
ADD sp,sp,#16
POP {r4,r7,pc}

Return Address lr

SFP (r7)

r4
sp

THUMB Example for Calling Convention
 Function Call: BL Function_A

 The BL instruction automatically loads the
return address into the link register lr

 Function Prologue 1: PUSH {r4,r7,lr}
 Stores callee-save register r4, the frame

pointer r7, and the return address lr on
the stack

 Function Prologue 2: SUB sp,sp,#16
 Allocates 16 Bytes for local variables on

the stack

 Function Body: Instructions, …
 Function Epilogue 2: ADD sp,sp,#16

 Reallocates the space for local variables

 Function Epilogue 2: POP {r4,r7,pc}
 The POP instruction pops the callee-save

register r4, the saved frame pointer r7,
and the return address off the stack which
is loaded it into the program counter pc

 Hence, the execution will continue in the
main function

Code

Instruction, …
BL Function_A
Instruction, …

<main>:

PUSH {r4,r7,lr}

<Function_A>:

Stack

sp

SUB sp,sp,#16

Instruction, …
ADD sp,sp,#16
POP {r4,r7,pc}

Return Address lr

SFP (r7)

r4

16 Bytes for
local variables

THUMB Example for Calling Convention
 Function Call: BL Function_A

 The BL instruction automatically loads the
return address into the link register lr

 Function Prologue 1: PUSH {r4,r7,lr}
 Stores callee-save register r4, the frame

pointer r7, and the return address lr on
the stack

 Function Prologue 2: SUB sp,sp,#16
 Allocates 16 Bytes for local variables on

the stack

 Function Body: Instructions, …
 Function Epilogue 2: ADD sp,sp,#16

 Reallocates the space for local variables

 Function Epilogue 2: POP {r4,r7,pc}
 The POP instruction pops the callee-save

register r4, the saved frame pointer r7,
and the return address off the stack which
is loaded it into the program counter pc

 Hence, the execution will continue in the
main function

Code

Instruction, …
BL Function_A
Instruction, …

<main>:

PUSH {r4,r7,lr}

<Function_A>:

Stack

SUB sp,sp,#16

Instruction, …
ADD sp,sp,#16
POP {r4,r7,pc}

Return Address lr

SFP (r7)

r4

16 Bytes for
local variables

sp

THUMB Example for Calling Convention
 Function Call: BL Function_A

 The BL instruction automatically loads the
return address into the link register lr

 Function Prologue 1: PUSH {r4,r7,lr}
 Stores callee-save register r4, the frame

pointer r7, and the return address lr on
the stack

 Function Prologue 2: SUB sp,sp,#16
 Allocates 16 Bytes for local variables on

the stack

 Function Body: Instructions, …
 Function Epilogue 2: ADD sp,sp,#16

 Reallocates the space for local variables

 Function Epilogue 2: POP {r4,r7,pc}
 The POP instruction pops the callee-save

register r4, the saved frame pointer r7,
and the return address off the stack which
is loaded it into the program counter pc

 Hence, the execution will continue in the
main function

Code

Instruction, …
BL Function_A
Instruction, …

<main>:

PUSH {r4,r7,lr}

<Function_A>:

Stack
sp

SUB sp,sp,#16

Instruction, …
ADD sp,sp,#16
POP {r4,r7,pc}

Return Address lr

SFP (r7)

r4

16 Bytes for
local variables

Let‘s go back to runtime attacks

Running Example

Launching a code injection attack
against the vulnerable program

Code Injection Attack on ARM

Code

Stack

Program Memory

Adversary

Instruction, …
BLX echo()
Instruction, …
BLX printf(), …

Return Address
SFP & Other Regs.

Local Buffer
Buffer[80]

sp

<main>:

Function Prologue
BLX gets(buffer), …
Function Epilogue

<echo>:

Code Injection Attack on ARM

Code

Stack

Program Memory

Corrupt Control

Structures

Adversary

Instruction, …
BLX echo()
Instruction, …
BLX printf(), …

sp

NEW RETURN ADDR

<main>:

Function Prologue
BLX gets(buffer), …
Function Epilogue

<echo>:

PATTERN

SHELLCODE

Code Injection Attack on ARM

Code

Stack

Program Memory

Adversary

Instruction, …
BLX echo()
Instruction, …
BLX printf(), …

spNEW RETURN ADDR

<main>:

Function Prologue
BLX gets(buffer), …
Function Epilogue

<echo>:

PATTERN

SHELLCODE

Code-Reuse Attacks

It started with return-into-libc

 Basic idea of return-into-libc

 Redirect execution to functions in shared
libraries

 Main target is UNIX C library libc

 Libc is linked to nearly every Unix program

 Defines system calls and other basic facilities such
as open(), malloc(), printf(), system(), execve(),
etc.

 Attack example: system (“/bin/sh”), exit()

http://insecure.org/sploits/linux.libc.return.lpr.sploit.html

Limitations

 No branching, i.e., no arbitrary code execution

 Critical functions can be eliminated or wrapped

Generalization of return-into-libc
attacks:

return-oriented programming (ROP)
[Shacham, ACM CCS 2007]

The Big Picture

n mmo r ien ted Pro g ra ingrutRe

ROP Adversary Model/Assumption

Data Area

Code Area

Application Gadget Space
(e.g., Shared

Libraries)

MEMORY
Application Address Space

Shared
Libraries

MOV

ADD

ESP

CALL

LNOP

XOR

LOAD

STORE

ROP
Payload 3

2 Adversary knows the memory
layout (memory disclosure)

4
Adversary can write ROP payload
in the data area (stack/heap)

1 Adversary can
hijack control-flow
(buffer overflow)

Adversary can construct
gadgets

ROP Attack Technique: Overview

Program Stack

Return Address 1

Return Address 2

Value 1

Value 2

Return Address 3

Program Code

REG1:

REG2:

Sequence 1

asm_ins
POP {PC}

Sequence 2

POP REG1
POP REG2
POP {PC}

Sequence 3

asm_ins
POP {PC}

SP

Corrupt Control

Structures

ROP Attack Technique: Overview

Program Stack

Return Address 1

Return Address 2

Value 1

Value 2

Return Address 3

Program Code

REG1:

REG2:

Sequence 1

asm_ins
POP {PC}

Sequence 2

POP REG1
POP REG2
POP {PC}

Sequence 3

asm_ins
POP {PC}

SP

ROP Attack Technique: Overview

Program Stack

Return Address 1

Return Address 2

Value 1

Value 2

Return Address 3

Program Code

REG1:

REG2:

Value 1

Sequence 1

asm_ins
POP {PC}

Sequence 2

POP REG1
POP REG2
POP {PC}

Sequence 3

asm_ins
POP {PC}

SP

ROP Attack Technique: Overview

Program Stack

Return Address 1

Return Address 2

Value 1

Value 2

Return Address 3

Program Code

REG1:

REG2: Value 2

Value 1

Sequence 1

asm_ins
POP {PC}

Sequence 2

POP REG1
POP REG2
POP {PC}

Sequence 3

asm_ins
POP {PC}

SP

ROP Attack Technique: Overview

Program Stack

Return Address 1

Return Address 2

Value 1

Value 2

Return Address 3

Program Code

REG1:

REG2: Value 2

Value 1

Sequence 1

asm_ins
POP {PC}

Sequence 2

POP REG1
POP REG2
POP {PC}

Sequence 3

asm_ins
POP {PC}

SP

...

Summary of Basic Idea
 Perform arbitrary computation with return-into-libc

techniques

 Approach
 Use small instruction sequences (e.g., of libc) instead of

using whole functions

 Instruction sequences range from 2 to 5 instructions

 All sequences end with a return (POP{PC}) instruction

 Instruction sequences are chained together to a gadget

 A gadget performs a particular task (e.g., load, store, xor,
or branch)

 Afterwards, the adversary enforces his desired actions by
combining the gadgets

Special Aspects of ROP

Code Base and Turing-Completeness

GADGET SPACE

Application
Code

Shared
Libraries

MOV reg1, 0x1

MOV reg2, 0x2

ADD reg1, reg2

RET

RET

RET

Static Analysis

Code Base and Turing-Completeness

GADGET SPACE

Application
Code

Shared
Libraries

MOV

Arith.

CALL

Cond.
JMP

LOADSTORE
Logic.

Uncond.
JMP

Turing-complete language

MandatoryOptional

Static Analysis

Gadget Space on Different Architectures

B8 13 00 00 00 E9 C3 F8 FF FF

00 00 00 E9 C3

mov $0x13,%eax

jmp 3aae9

add %al,(%eax)

add %ch,%cl

ret

Intended Code

Unintended Code

GADGET SPACE
GADGET
SPACE

Architectures with memory
alignment, e.g., SPARC, ARM

Architectures with no memory
alignment, e.g., Intel x86

Stack Pivot
[Zovi, RSA Conference 2010]

 Stack pointer plays an important role

 It operates as an instruction pointer in ROP attacks

 Challenge

 In order to launch a ROP exploit based on a heap
overflow, we need to set the stack pointer to point to the
heap

 This is achieved by a stack pivot

Stack Pivot in Detail

Heap

Return Address 1

Return Address 2

Return Address 3

Stack

TOP of StackSP

Function Ptr

Code

MOV SP, REG1*

POP {PC}

Stack Pivot

label_pivot:

*REG1 is controlled by the adversary and holds beginning of ROP payload

Stack Pivot in Detail

Heap

Return Address 1

Return Address 2

Return Address 3

Stack

TOP of StackSP Code

MOV SP, REG1*

POP {PC}

Stack Pivot

label_pivot:

label_pivot

*REG1 is controlled by the adversary and holds beginning of ROP payload

Stack Pivot in Detail

Heap

Return Address 1

Return Address 2

Return Address 3

Stack

TOP of Stack

SP

Code

MOV SP, REG1*

POP {PC}

Stack Pivot

label_pivot:

*REG1 is controlled by the adversary and holds beginning of ROP payload

label_pivot

ROP Variants

 Motivation: return address protection (shadow stack)

 Validate every return (intended and unintended) against
valid copies of return addresses
[Davi et al., AsiaCCS 2011]

 Exploit indirect jumps and calls

 ROP without returns
[Checkoway et al., ACM CCS 2010]

CURRENT RESEARCH

1997

2001

2005

2007

2008

2009

2010

2011/
2012

2013

2014

ret2libc
Solar Designer

Advanced ret2libc
Nergal

Borrowed Code Chunk Exploitation
Krahmer

ROP on x86
Shacham (CCS)

ROP on SPARC
Buchanan et al (CCS)

ROP on Atmel AVR
Francillon et al (CCS)

ROP Rootkits
Hund et al (USENIX)

ROP on PowerPC
FX Lindner (BlackHat)

ROP on ARM/iOS
Miller et al (BlackHat)

ROP without Returns
Checkoway et al (CCS)

Practical ROP
Zovi (RSA Conference)

Pwn2Own (iOS/IE)
Iozzo et al / Nils

JIT-ROP
Snow et al (IEEE S&P)

Blind ROP
Bittau et al (IEEE S&P)

Out-Of-Control
Göktas et al (IEEE S&P)

Stitching Gadgets
Davi et al (USENIX)

ROP is Dangerous
Carlini et al (USENIX)

Flushing Attacks
Schuster et al (RAID)

Real-World Exploits

SELECTED

Our Work & Involvement
 Attacks

 Return-Oriented Programming without Returns
[CCS 2010]

 Privilege Escalation Attacks on Android [ISC 2010]
 Just-In-Time Return-oriented Programming (JIT-ROP)

[IEEE S&P 2013, Best Student Paper] & [BlackHat USA 2013]
 Stitching the Gadgets [USENIX Security 2014] & [BlackHat USA 2014]
 COOP [IEEE Security & Privacy 2015]
 Losing Control [CCS 2015]

 Detection & Prevention
 ROPdefender [AsiaCCS 2011]
 Mobile Control-Flow Integrity (MoCFI) [NDSS 2012]
 XIFER: Fine-Grained ASLR [AsiaCCS 2013]
 Filtering ROP Payloads [RAID 2013]
 Isomeron [NDSS 2015]
 Readactor [IEEE Security & Privacy 2015, CCS 2015]
 HAFIX: Fine-Grained CFI in Hardware [DAC 2014, DAC 2015, DAC 2016]
 Readactor++ [CCS 2015]

In this tutorial

Main Defense Techniques
(Fine-grained) Code

Randomization
[Cohen 1993 & Larsen et al., SoK IEEE

S&P 2014]

Control-Flow Integrity
(CFI)

[Abadi et al., CCS 2005 &
TISSEC 2009]

A

B

DC

E F

Label_1

Label_2

Label_4

Label_6Label_5

Label_3

Memory

A

B

C

E

D

F

Exit(B) == Label_5

Main Defense Techniques
(Fine-grained) Code

Randomization
[Cohen 1993 & Larsen et al., SoK IEEE

S&P 2014]

Control-Flow Integrity
(CFI)

[Abadi et al., CCS 2005 &
TISSEC 2009]

A

B

DC

E F

Label_1

Label_2

Label_4

Label_6Label_5

Label_3

Memory (randomized)

D

A

E

F

B

C

Exit(B) == Label_5

ASLR – Address Space Layout Randomization

Basics of Memory Randomization
 ASLR randomizes the base address of code/data segments

Program Memory

Heap

Library (e.g., libc)

Stack

Application Run 1

Program Memory

Heap

Stack

Application Run 2

Library (e.g., libc)

Executable
Executable

Brute-Force Attack
[Shacham et al., ACM

CCS 2004]

Guess Address
of Library
Function

Basics of Memory Randomization
 ASLR randomizes the base address of code/data segments

Program Memory

Heap

Library (e.g., libc)

Stack

Application Run 1

Program Memory

Heap

Stack

Application Run 2

Library (e.g., libc)

Executable
Executable

Disclosure Attack
e.g., [Sotirov et al.,

Blackhat 2008]

1. Exploit disclosure
vulnerability

2. Retrieve
runtime ADDR

address

3. Revert all library
addresses based on ADDR

Fine-Grained ASLR

 ORP [Pappas et al., IEEE S&P 2012]: Instruction reordering/substitution
within a BBL

 ILR [Hiser et al., IEEE S&P 2012]: Randomizing each instruction‘s location

 STIR [Wartell et al., ACM CCS 2012] &
XIFER [Davi et al., AsiaCCS 2013]: Permutation of BBLs

Executable/Library

Application Run 1

Code Block 1

Executable/Library

Application Run 2

Code Block 2

Code Block 3

Code Block 3

Code Block 1

Code Block 2

Just-In-Time Code Reuse: On the Effectiveness of Fine-Grained
Address Space Layout Randomization

IEEE Security and Privacy Best Student Paper 2013
Kevin Z. Snow (UNC Chapel Hill), Lucas Davi, Alexandra

Dmitrienko, Christopher Liebchen, Fabian Monrose (UNC
Chapel Hill), Ahmad-Reza Sadeghi

Does Fine-Grained ASLR
Provide a Viable Defense in the Long Run?

High-Level Idea

Code Page 1

INS_5

Code Pointer

High-Level Idea

Code Page 1

INS_1

INS_3

INS_5

INS_6

INS_4

INS_2

Code Pointer

4KB

Scripting Engine

Page Start

Page End

DisassembleJMP INS_10

High-Level Idea

Code Page 1

INS_1

INS_3

INS_4

INS_5

INS_6

INS_4

INS_2

Code Pointer

Scripting Engine

Code Page 2

INS_7

INS_9

INS_10

INS_12

INS_13

INS_11

INS_8

JMP INS_10

Code Randomization: Lessons Learned

1. Memory disclosure attacks are far more damaging than
previously believed

→ A single address-instruction mapping leads to many leaks
of code pages

2. Fine-grained ASLR can be bypassed with JIT-ROP

→ Enforce execute-only memory
Software-based [Backes et al., CCS 2014]
Hardware-based: Readactor(++) [with Crane et al.,
IEEE S&P 2015 & CCS 2015]

→ Combine code- and execution randomization
Isomeron [with Liebchen et al., NDSS 2015]

→ Mitigating memory disclosure

Control-Flow Integrity (CFI)
[Abadi et al., CCS 2005 & TISSEC 2009]

A general defense against code-reuse attacks

A

B

DC

E F

Label_1

Label_2

Label_4

Label_6Label_5

Label_3

Exit(B) == Label_5

Label Granularity: Trade-Offs (1/2)

 Many CFI checks are required if unique labels are
assigned per node

A

B

DC

E F

Label_1

Label_2

Label_4

Label_6Label_5

Label_3

Exit(B) ==
[Label_3, Label_4, Label_5]

CFI Check

Basic Block

Label

Label Granularity: Trade-Offs (2/2)

 Optimization step: Merge labels to allow single CFI check

 However, this allows for unintended control-flow paths

A

B

DC

E F

Label_1

Label_2

Label_4

Label_6Label_5

Label_3

Exit(B) == Label_3

CFI Check

Basic Block

Label

Label_3

Label_3

Exit(C) == Label_3

Label Problem for Returns
 Static CFI label checking leads to coarse-grained

protection for returns

B

C

AA‘ B‘
CALL

RET

Label_1 Label_2

Exit(C) == [Label_1, Label_2]

Program Code

Function A

CALL C
Code

Function B

CALL C
Code

Function C

Code
RETURN

A‘

B‘

Shadow Stack / Return Address Stack

B

C

AA‘ B‘
CALL

RET

Shadow Stack
Backup storage for

return addresses

CALL RET

Backup Check

 Shadow stack allows for fine-grained return address
protection but incurs higher overhead

Exit(C) == ShadowStack[TOS]
Return Addr A‘

CFI: Benefits and Limitations

Hot Research Topic:
“Practical” (coarse-grained)
Control Flow Integrity (CFI)

Recently, many solutions proposed

kBouncer
[USENIX Sec’13]

ROPecker
[NDSS’14]

ROPGuard
[Microsoft EMET]

CFI for COTS
Binaries

[USENIX Sec’13]

CCFIR
[IEEE S&P’13]

MS
BlueHat

Prize

MS
BlueHat

Prize

http://technet.microsoft.com/
en-us/security/jj653751

EMET

Open Question:
Practical and secure mitigation of code

reuse attacks

Turing-completeness of return-oriented
programming

Negative Result:
All current (published)

coarse-grained CFI solutions can be
bypassed

Big Picture

Systematic Security
Analysis of Coarse-
Grained CFI

Gadget
Analysis

Exploit
Development

Turing-complete
gadget set

Gadgets to
bypass heuristics

CFI Policies

Frequency of CFI Checks

Deriving a CFI policy that
combines all schemes

1. Systematic Security Analysis of
Coarse-Grained CFI

Coarse-grained CFI leads to CFG imprecision

1

2

53

4 6

2

1

11

2 2

Reducing
number of

labels

Allowed paths: 1→2 and 2→1

Main Coarse-Grained CFI Policies

 CFI Policy 1: Call-Preceded
Sequences

 Returns need to target a call-
preceded instruction

 No shadow stack required

 CFI Policy 2: Behavioral-
Based Heuristics

 Prohibit a chain of N short
sequences each consisting
of less than S instructions

Application

CALL A

INS_1

INS_2

CALL B

INS_3

CALL C

INS_4

RET > S

< S

< S < S < S

1 2 N

…

Threshold Setting
kBouncer: (N=8; S<=20)
ROPecker: (N=11; S<=6)

Coarse-Grained CFI Proposals

Last Branch
Record (LBR)

Win API /
Critical Function

Application

POP PUSH

Stack

kBouncer
[USENIX Sec’13]

ROPecker
[NDSS’14]

ROPGuard
[Microsoft EMET]

H
O

O
K

Paging

H
O

O
K

Binary
Instrumentation

CFI for COTS
Binaries

[USENIX Sec’13]

CCFIR
[IEEE S&P‘13]

Deriving a Combined CFI Policy
CFI Policy kBouncer

[USENIX
Sec. 2013]

ROPecker
[NDSS
2014]

ROPGuard
[Microsoft
EMET]

CFI for COTS
Binaries
[USENIX
Sec. 2013]

Combined
CFI Policy

CFI Policy 1
Call-Preceded Sequences

CFI Policy 2
Behavioral-Based Heuristics

Time of CFI Check WinAPI 2 Page
Sliding

Window/
Critical

Functions

WinAPI/
Critical

Functions

Indirect
Branch

Any Time

No Restriction CFI Policy

Here only the core policies shown. However, we consider all other
deployed policies in our analysis.

2. Gadget Analysis

Methodology

Common
Library

kernel32.dll

Sequence
Subset 1

Sequence
Subset n

MOV

ADD

ESP

CALL

LNOP

XOR

Sequence
Finder (IDA Pro)

List of Call-
Preceded

Sequences

Sequence Filter
(D Program)

Provide filters on
Reg, Ins, Opnd, Length

Gadget Generation
(manual)

Search for Gadgets

LOAD

STORE

(Excerpt of) Turing-Complete Gadget Set in
CFI-Protected kernel32.dll

Gadget Type CALL-Preceded Sequence
ending in a RET instruction

LOAD
Register

EBP := pop ebp
ESI := pop esi; pop ebp
EDI := pop edi; leave
ECX := pop ecx; leave
EBX := pop edi; pop esi; pop ebx; pop ebp
EAX := mov eax,edi; pop edi; leave
EDX := mov eax,[ebp-8]; mov edx,[ebp-4]; pop edi; leave

LOAD/STORE
Memory

LD(EAX) := mov eax,[ebp+8]; pop ebp
ST(EAX) := mov [esi],eax; xor eax,eax; pop esi; pop ebp
ST(ESI) := mov [ebp-20h],esi
ST(EDI) := mov [ebp-20h],edi

Arithmetic/
Logical

ADD/SUB := sub eax,esi; pop esi; pop ebp
XOR := xor eax,edi; pop edi; pop esi; pop ebp

Branches unconditional branch 1 := leave
unconditional branch 2 := add esp,0Ch; pop ebp
conditional LD(EAX) := neg eax; sbb eax,eax; and eax,[ebp-4];
………………………………………………………….leave

Long-NOP Gadget

ROP
Gadget 1

Store
Registers

Prepare
Long NOP

Long
NOP

Reset
Registers

ROP
Gadget 2

…

ESI

EDI

EBX

Stack

Static
Constants

Arbitrary Data
Area (36 Bytes)

ESI

EDI

3. Exploit Development

Adobe Reader 9.1
CVE-2010-0188

MPlayer Lite r33064 m3u
Buffer Overflow Exploit

Original exploits
detected by coarse-

grained CFI

Our instrumented
exploits bypass coarse-

grained CFI

Coarse-Grained CFI: Lessons Learned

1. Too many call sites available

→ Restrict returns to their actual caller (shadow stack)

2. Heuristics are ad-hoc and ineffective

→ Adjusted sequence length leads to high false positive

3. Too many indirect jump and call targets

 Resolving indirect jumps and calls is non-trivial

→ Compromise: Compiler support

CURRENT RESEARCH
What’s next?

Hardware-Assisted CFI

HAFIX: Hardware Flow Integrity Extensions
[O. Arias, L. Davi, M. Hanreich, Y. Jin, P. Koeberl, D. Paul,

A.-R. Sadeghi, D. Sullivan, DAC 2015, Best Paper]

Design Decisions: Why CFI Processor Support?

CFI Processor Support based on Instruction set
architecture (ISA) extensions

Dedicated CFI instructions

No offline training phase

Instant attack detection

CFI control state

Binding of CFI data to CFI state and instructions

Big Picture

State 0
Normal Execution

Function Calls

Indirect Jumps

Function Returns

CFI State
Only CFI instructions

allowed

CFI Check Call

CFI Check Jump

CFI Check Return

Example Policy
Returns can only target call sites of

functions that are currently executing

HAFIX State Model

State 0
Normal Execution

State 1
Function Entry

Direct and
Indirect Calls

CFIDEL label_1

State 2
Function Exit

CFIBR label_1

CFIRET label_0

CFI Label State

State 3
Attack Detection

STOP Execution

No CFIBR issued

No CFIRET issued or
inactive label used

Valid CFIBR issued

Valid CFIRET issued

Activate label

Deactivate label
Return

Check label

label_0

label_1

107/3
6

Remarks

 Implementation on Intel Siskiyou Peak and
SPARC-LEON3

 High efficiency 1-2%

 Current prototype supports different levels of
CFG precision [visit our DAC‘16 talk on Thursday,
June 09, 3:30pm - 5:30pm | 19AB]

Conclusion

 Code-reuse attacks are prevalent

 Google and Microsoft take these attacks seriously

 Many real-world exploits

 Existing solutions can be bypassed

 Good News

 Many innovative defense techniques have been
proposed

 Promising new directions

 Memory safety based on code-pointer integrity
[Kuznetsov et al., OSDI 2014]

References

References (1/5)
 [Abadi et al., ACM CCS 2005 & ACM TISSEC 2009]

M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.
Control-flow integrity: Principles, implementations, and applications.

 [Buchanan et al., ACM CCS 2008]
E. Buchanan, R. Roemer, H. Shacham, and S. Savage.
When good instructions go bad: Generalizing return-oriented programming to RISC.

 [Checkoway et al., EVT/WOTE 2009]
S. Checkoway, A.J. Feldman, B. Kantor, J.A. Halderman, E.W. Felten, and H. Shacham.
Can DREs provide long-lasting security? The case of return-oriented programming and
the AVC advantage.

 [Checkoway et al., ACM CCS 2010]
S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and M. Winandy.
Return-oriented programming without returns.

 [Cheng et al., NDSS 2014]
Y. Cheng, Z. Zhou, Y. Miao, X. Ding, and R. H. Deng.
ROPecker: A generic and practical approach for defending against ROP attacks.

 [Cohen, Computer & Security 1993]
F. B. Cohen.
Operating system protection through program evolution.

References (2/5)
 [Cowan et al., USENIX Security 1998]

C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle,
and Q. Zhang.
StackGuard: Automatic adaptive detection and prevention of buffer-overflow attacks.

 [Davi et al., ASIACCS 2013]
L. Davi, A. Dmitrienko, S. Nürnberger, A.-R. Sadeghi.
Gadge me if you can - Secure and efficient ad-hoc instruction-level randomization for
x86 and ARM.

 [Davi et al., ASIACCS 2011]
L. Davi, A.-R. Sadeghi, and M. Winandy.
ROPdefender: A detection tool to defend against return-oriented programming
attacks.

 [Davi et al., USENIX Security 2014]
L. Davi, D. Lehmann, A.-R. Sadeghi, and F. Monrose.
Stitching the gadgets: On the ineffectiveness of coarse-grained control-flow integrity
protection.

 [Davi et al., DAC 2014]
L. Davi, P. Koeberl, and A.-R. Sadeghi.
Hardware-assisted fine-grained control-flow integrity: Towards efficient protection of
embedded systems against software exploitation.

References (3/5)
 [Erlingsson, Technical Report 2007]

Ú. Erlingsson.
Low-level software security: Attacks and defenses.

 [Forrest et al., Hot Topics in Operating Systems 1997]
S. Forrest, A. Somayaji, and D. Ackley.
Building diverse computer systems.

 [Fratric, Technical Report 2012]
I. Fratric.
ROPGuard: Runtime prevention of return-oriented programming attacks.

 [Francillion et al., ACM CCS 2008]
A. Francillon and C. Castelluccia.
Code injection attacks on Harvard-architecture devices.

 [Hiser et al., IEEE Security & Privacy 2012]
J. D. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. Davidson.
ILR: Where’d my gadgets go?.

 [Iozzo et al., Pwn2Own 2010]
Ralf-Philipp Weinmann and Vincenzo Iozzo.

References (4/5)
 [Pappas et al., IEEE Security & Privacy 2012]

V. Pappas, M. Polychronakis, and A. D. Keromytis.
Smashing the gadgets: Hindering return-oriented programming using in-place code
randomization.

 [Pappas et al., USENIX Security 2013]
V. Pappas, M. Polychronakis, and A. D. Keromytis.
Transparent ROP exploit mitigation using indirect branch tracing.

 [Shacham, ACM CCS 2004]
H. Shacham.
The geometry of innocent flesh on the bone: Return-into-libc without function calls
(on the x86).

 [Shacham, ACM CCS 2007]
H. Shacham, E. jin Goh, N. Modadugu, B. Pfaff, and D. Boneh.
On the effectiveness of address-space randomization.

 [Snow et al., IEEE Security & Privacy 2013]
K. Snow, L. Davi, A. Dmitrienko, C. Liebchen, F. Monrose, A.-R. Sadeghi.
Just-in-time code reuse: On the effectiveness of fine-grained ASLR.

References (5/5)
 [Sotirov et al., BlackHat USA 2013]

A. Sotirov and M. Dowd.
Bypassing browser memory protections in Windows Vista.

 [Wartell et al., ACM CCS 2012]
R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin.
Binary stirring: Self-randomizing instruction addresses of legacy x86 binary code.

 [Zhang et al., USENIX Security 2013]
M. Zhang and R. Sekar.
Control flow integrity for COTS binaries.

 [Zhang et al., IEEE Security & Privacy 2013]
C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song, and W. Zou.
Practical control flow integrity & randomization for binary executables.

 [Zovi, RSA Conference 2010]
D. D. Zovi.
Practical return-oriented programming.

