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Motivating Problem

• Software increasingly 
sophisticated and 
complex

• Various developers 
involved

• Native Code

• Many program bugs

Large attack surface for runtime exploits on 
diverse platforms



Introduction

 Vulnerabilities

 Programs continuously suffer from program bugs, e.g., a 
buffer overflow

 Memory errors

 CVE statistics; zero-day

 Runtime Attack

 Exploitation of program vulnerabilities to perform 
malicious program actions

 Control-flow attack; runtime exploit

Focus in this 
tutorial



Three Decades of Runtime Attacks

Morris Worm
1988

Code 
Injection

AlephOne
1996

return-into-
libc

Solar Designer
1997

Borrowed 
Code Chunk 
Exploitation

Krahmer
2005

Return-oriented 
programming

Shacham
CCS 2007

Continuing Arms 
Race

…



Are these attacks relevant?



Recent Attacks
Stagefright [Drake, BlackHat 2015]

These issues in Stagefright code 
critically expose 95% of Android 
devices, an estimated 950 million 
devices

Adversary

MMS

Cisco Router Exploit [2016]

Million CISCO ASA Firewalls 
potentially vulnerable to 
attacks



Relevance and Impact

• Web browsers repeatedly exploited in pwn2own contests

• Zero-day issues exploited in Stuxnet/Duqu [Microsoft, BH 2012]

• iOS jailbreak

High Impact of Attacks

• Microsoft EMET (Enhanced Mitigation Experience Toolkit) 
includes a ROP detection engine

• Microsoft Control Flow Guard (CFG) in Windows 10

• Google‘s compiler extension VTV (vitual table verification)

Industry Efforts on Defenses

• A large body of recent literature on attacks and defenses

Hot Topic of Research



But runtime exploits have also some 
“good” side-effects



Apple iPhone Jailbreak
Disable signature verification and escalate privileges to root

Request
http://www.jailbreakme.com/_
/iPhone3,1_4.0.pdf

1) Exploit PDF Viewer Vulnerability by means of 
Return-Oriented Programming

2) Start Jailbreak

3) Download required system files

4) Jailbreak Done



Tutorial Outline

1. Lecture on Runtime Exploits

 Introduction

 Selected Background on ARM

 Code Injection

 Code-Reuse Attacks

 Modern Defense Techniques and Their Limitations

 Hardware-Assisted Protection Schemes

2. Hands-on Lab (Runtime attacks against Android-ARM)



BASICS
What is a runtime attack ?



Big Picture: Program Compilation

Source Code
C

COPY ( buffer[8], *usr_input )

Compile

Executable
binary

mov reg0[0-3], reg1[0-3]

mov reg0[4-n], reg1[4-n]

reg0

reg1

buffer[8]

usr_inputusr_inputusr_input



Big Picture: Program Execution
MEMORY - RAM

DATA

CODE

Initialize buffer[8]

Get usr_input

usr_input[0-3]:

usr_input[4-7]:

usr_input[8-11]:

buffer[0-3]:

buffer[4-7]:

POINTER:

…

00000000

00000000

00000000

00000000

00000000

8000ABCD

…

Executable
binary



Big Picture: Program Execution
MEMORY - RAM

DATA

CODE

Initialize buffer[8]

Get usr_input

usr_input[0-3]:

usr_input[4-7]:

usr_input[8-11]:

buffer[0-3]:

buffer[4-7]:

POINTER:

…

00000000

00000000

00000000

00000000

00000000

8000ABCD

…

Executable
binary

AAAAAAAA

BBBBBBBB

CCCCCCCC

AAAAAAAABBBBBBBB

CCCCCCCC



Big Picture: Program Execution
MEMORY - RAM

DATA

CODE

Initialize buffer[8]

Get usr_input

COPY (buffer[8], *usr_input)

usr_input[0-3]:

usr_input[4-7]:

usr_input[8-11]:

buffer[0-3]:

buffer[4-7]:

POINTER:

…

00000000

00000000

00000000

00000000

00000000

8000ABCD

…

Executable
binary

AAAAAAAA

BBBBBBBB

CCCCCCCC

AAAAAAAA

BBBBBBBB

CCCCCCCC



Observations

 There are several observations

1. A programming error leads to a program-flow 
deviation

2. Missing bounds checking

 Languages like C, C++, or assembler do not automatically 
enforce bounds checking on data inputs

3. An adversary can provide inputs that influence the 
program flow

 What are the consequences?



General Principle of Code Injection Attacks

ENTRY
asm_ins, …
EXIT

Basic Block (BBL) A

A

C B

ENTRY
asm_ins, …
EXIT

BBL B

D

Control-Flow 
Graph (CFG)

1 Buffer overflow

2 Code Injection3 Control-flow 
deviation

Data flows

Program flows



General Principle of Code Reuse Attacks

ENTRY
asm_ins, …
EXIT

Basic Block (BBL) A

A

C B

ENTRY
asm_ins, …
EXIT

BBL B

Control-Flow 
Graph (CFG)

1 Buffer overflow

Data flows

Program flows

2

Control-flow 
deviation



Code Injection vs. Code Reuse

 Code Injection – Adding a new node to the CFG

 Adversary can execute arbitrary malicious code

 open a remote console (classical shellcode)

 exploit further vulnerabilities in the OS kernel to install a 
virus or a backdoor

 Code Reuse – Adding a new path to the CFG

 Adversary is limited to the code nodes that are available 
in the CFG

 Requires reverse-engineering and static analysis of the 
code base of a program



BASICS
Code injection is more powerful;

so why are attacks today 
typically using code reuse? 



DATA Memory
readable and writeable

CODE Memory
readable and executable

Data Execution Prevention (DEP)
 Prevent execution from a writeable memory (data) area

A

C B

D

Memory Access 
Violation



Data Execution Prevention (DEP) cntd.

 Implementations

 Modern OSes enable DEP by default (Windows, Linux, 
iOS, Android, Mac OSX)

 Intel, AMD, and ARM feature a special No-Execute bit to 
facilitate deployment of DEP

 Side Note

 There are other notions referring to the same principle

 W ⊕ X – Writeable XOR eXecutable

 Non-executable memory



Hybrid Exploits

 Today‘s attacks combine code reuse with code injection

CODE Memory I
readable and executable

Executable

DATA Memory
readable and writeable

CODE Memory II (Libraries)
readable and executable

AllocateMemory()

CopyMemory()

ChangePermission()

DATA Memory
readable and writeable

1

2

Malicious 
Code

Malicious 
Code
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Hybrid Exploits

 Today‘s attacks combine code reuse with code injection

CODE Memory I
readable and executable

Executable

DATA Memory
readable and writeable

CODE Memory II (Libraries)
readable and executable

AllocateMemory()

CopyMemory()

ChangePermission()

CODE Memory
readable and executable

1

2

3

4

Malicious 
Code

Malicious 
Code

Malicious 
Code



Selected background on ARM registers,
stack layout, and calling convention



ARM Overview

 ARM stands for Advanced RISC Machine

 Main application area: Mobile phones, smartphones 
(Apple iPhone, Google Android), music players, tablets, 
and some netbooks

 Advantage: Low power consumption

 Follows RISC design

 Mostly single-cycle execution

 Fixed instruction length

 Dedicated load and store instructions

 ARM features XN (eXecute Never) Bit



ARM Overview
 Some features of ARM

 Conditional Execution

 Two Instruction Sets
 ARM (32-Bit)

 The traditional instruction set

 THUMB (16-Bit)
 Suitable for devices that provide limited memory space

 The processor can exchange the instruction set on-the-fly

 Both instruction sets may occur in a single program

 3-Register-Instruction Set
 instruction destination, source, source

ADD r0,r1,r2 r0 r1 r2= +



ARM Registers
 ARM‘s 32 Bit processor features 16 registers

 All registers r0 to r15 are directly accessible

r3

r2

r1

r0

r4

r5

r6

r7

r8

r9

r10

r11
cpsr

r12/ip

r13/sp

r14/lr

r15/pc

Function 
arguments and 

results from 
function

(caller-save)

Register 
variables

(callee-save)

Intra Procedure Call Register

Stack Pointer

Link Register

Program Counter

Control Program Status Register

Holds Return Address

Sometimes used for long jumps, i.e., 
branches that require the full ARM 32 

Bit address space

Next address of instruction
to be executed

Holds Top Address of
the Stack

Status Register: e.g., 
Carry Flag



ARM Stack Layout

Stack Pointer (sp)

Function
Arguments

Return Address

Saved Frame PointerStack 

Frame

High Addresses

Low Addresses

Stack grows 
downwards

* Note that a subroutine does not always store all callee-save registers (r4 to r11); instead  it stores
those registers that it really uses/changes

Callee-Save
Registers*

Local Variables

Frame Pointer

(r7 or r11)

The first four arguments are passed
via r0 to r3. This area is only used if

more than four 4-Byte arguments are
expected, or when the callee needs to

save function arguments



The Stack and Stack Frame Elements
 Stack is a last in, first out (LIFO) memory area where the Stack Pointer points to the 

last stored element on the stack
 The stack can be accessed by two basic operations

1. PUSH elements onto the stack (SP is decremented)
2. POP elements off the stack (SP is incremented)

 Stack is divided into individual stack frames
 Each function call sets up a new stack frame on top of the stack
1. Function arguments

 Arguments provided by the caller of the function

2. Callee-save Registers
 Registers that a subroutine (callee) needs to reset before returning to the caller of the 

subroutine

3. Return address
 Upon function return control transfers to the code pointed to by the return address (i.e., 

control transfers back to the caller of the function)

4. Saved Frame Pointer/Saved Base Pointer
 Frame pointer/Base pointer of the calling function
 Variables and arguments are accessed via an offset to the frame pointer/base pointer
 Provided in register r11 (ARM code), r7 (THUMB code), or EBP (x86 code)

5. Local variables
 Variables that the called function uses internally



Function Calls on ARM

 Branches to addr, and
stores the return address
in link register lr/r14

 The return address is
simply the address that
follows the BL instruction

BL addr BLX addr|reg

 Branches to addr|reg, and
stores the return address
in lr/r14

 This instruction allows the
exchange between ARM 
and THUMB

 ARM->THUMB: LSB=1

 THUMB->ARM: LSB=0

Branch with Link
Branch with Link and 

eXchange instruction set



Function Returns on ARM

 Branches to the return 
address stored in the link 
register lr

 Register-based return for
leaf functions

BX lr POP {pc}

 Pops top of the stack into
the program counter
pc/r15

 Stack-based return for
non-leaf functions

Branch with eXchange
instruction set



THUMB Example for Calling Convention
 Function Call: BL Function_A

 The BL instruction automatically loads the 
return address into the link register lr

 Function Prologue 1: PUSH {r4,r7,lr}
 Stores callee-save register r4, the frame 

pointer r7, and the return address lr on 
the stack

 Function Prologue 2: SUB sp,sp,#16
 Allocates 16 Bytes for local variables on 

the stack

 Function Body: Instructions, …
 Function Epilogue 2: ADD sp,sp,#16

 Reallocates the space for local variables

 Function Epilogue 2: POP {r4,r7,pc}
 The POP instruction pops the callee-save 

register r4, the saved frame pointer r7, 
and the return address off the stack which 
is loaded it into the program counter pc

 Hence, the execution will continue in the
main function

Code

Instruction, …
BL Function_A
Instruction, …

<main>:

PUSH {r4,r7,lr}

<Function_A>:

Stack

SUB sp,sp,#16

Instruction, …
ADD sp,sp,#16
POP {r4,r7,pc}

Return Address lr

SFP (r7)

r4
sp



THUMB Example for Calling Convention
 Function Call: BL Function_A

 The BL instruction automatically loads the 
return address into the link register lr

 Function Prologue 1: PUSH {r4,r7,lr}
 Stores callee-save register r4, the frame 

pointer r7, and the return address lr on 
the stack

 Function Prologue 2: SUB sp,sp,#16
 Allocates 16 Bytes for local variables on 

the stack

 Function Body: Instructions, …
 Function Epilogue 2: ADD sp,sp,#16

 Reallocates the space for local variables

 Function Epilogue 2: POP {r4,r7,pc}
 The POP instruction pops the callee-save 

register r4, the saved frame pointer r7, 
and the return address off the stack which 
is loaded it into the program counter pc

 Hence, the execution will continue in the
main function

Code

Instruction, …
BL Function_A
Instruction, …

<main>:

PUSH {r4,r7,lr}

<Function_A>:

Stack

sp

SUB sp,sp,#16

Instruction, …
ADD sp,sp,#16
POP {r4,r7,pc}

Return Address lr

SFP (r7)

r4

16 Bytes for
local variables



THUMB Example for Calling Convention
 Function Call: BL Function_A

 The BL instruction automatically loads the 
return address into the link register lr

 Function Prologue 1: PUSH {r4,r7,lr}
 Stores callee-save register r4, the frame 

pointer r7, and the return address lr on 
the stack

 Function Prologue 2: SUB sp,sp,#16
 Allocates 16 Bytes for local variables on 

the stack

 Function Body: Instructions, …
 Function Epilogue 2: ADD sp,sp,#16

 Reallocates the space for local variables

 Function Epilogue 2: POP {r4,r7,pc}
 The POP instruction pops the callee-save 

register r4, the saved frame pointer r7, 
and the return address off the stack which 
is loaded it into the program counter pc

 Hence, the execution will continue in the
main function

Code

Instruction, …
BL Function_A
Instruction, …

<main>:

PUSH {r4,r7,lr}

<Function_A>:

Stack

SUB sp,sp,#16

Instruction, …
ADD sp,sp,#16
POP {r4,r7,pc}

Return Address lr

SFP (r7)

r4

16 Bytes for
local variables

sp



THUMB Example for Calling Convention
 Function Call: BL Function_A

 The BL instruction automatically loads the 
return address into the link register lr

 Function Prologue 1: PUSH {r4,r7,lr}
 Stores callee-save register r4, the frame 

pointer r7, and the return address lr on 
the stack

 Function Prologue 2: SUB sp,sp,#16
 Allocates 16 Bytes for local variables on 

the stack

 Function Body: Instructions, …
 Function Epilogue 2: ADD sp,sp,#16

 Reallocates the space for local variables

 Function Epilogue 2: POP {r4,r7,pc}
 The POP instruction pops the callee-save 

register r4, the saved frame pointer r7, 
and the return address off the stack which 
is loaded it into the program counter pc

 Hence, the execution will continue in the
main function

Code

Instruction, …
BL Function_A
Instruction, …

<main>:

PUSH {r4,r7,lr}

<Function_A>:

Stack
sp

SUB sp,sp,#16

Instruction, …
ADD sp,sp,#16
POP {r4,r7,pc}

Return Address lr

SFP (r7)

r4

16 Bytes for
local variables



Let‘s go back to runtime attacks



Running Example



Launching a code injection attack
against the vulnerable program



Code Injection Attack on ARM

Code

Stack

Program Memory

Adversary

Instruction, …
BLX echo()
Instruction, …
BLX printf(), …

Return Address
SFP & Other Regs.

Local Buffer 
Buffer[80]

sp

<main>:

Function Prologue
BLX gets(buffer), …
Function Epilogue

<echo>:



Code Injection Attack on ARM

Code

Stack

Program Memory

Corrupt Control

Structures

Adversary

Instruction, …
BLX echo()
Instruction, …
BLX printf(), …

sp

NEW RETURN ADDR

<main>:

Function Prologue
BLX gets(buffer), …
Function Epilogue

<echo>:

PATTERN

SHELLCODE



Code Injection Attack on ARM

Code

Stack

Program Memory

Adversary

Instruction, …
BLX echo()
Instruction, …
BLX printf(), …

spNEW RETURN ADDR

<main>:

Function Prologue
BLX gets(buffer), …
Function Epilogue

<echo>:

PATTERN

SHELLCODE



Code-Reuse Attacks



It started with return-into-libc

 Basic idea of return-into-libc

 Redirect execution to functions in shared 
libraries

 Main target is UNIX C library libc

 Libc is linked to nearly every Unix program

 Defines system calls and other basic facilities such 
as open(), malloc(), printf(), system(), execve(), 
etc.

 Attack example: system (“/bin/sh”), exit()

http://insecure.org/sploits/linux.libc.return.lpr.sploit.html


Limitations

 No branching, i.e., no arbitrary code execution

 Critical functions can be eliminated or wrapped



Generalization of return-into-libc 
attacks:

return-oriented programming (ROP)
[Shacham, ACM CCS 2007]



The Big Picture

n mmo r ien ted Pro g ra ingrutRe



ROP Adversary Model/Assumption

Data Area

Code Area

Application Gadget Space
(e.g., Shared 

Libraries)

MEMORY
Application Address Space

Shared 
Libraries

MOV

ADD

ESP

CALL

LNOP

XOR

LOAD

STORE

ROP 
Payload 3

2 Adversary knows the memory 
layout (memory disclosure)

4
Adversary can write ROP payload 
in the data area (stack/heap)

1 Adversary can 
hijack control-flow 
(buffer overflow)

Adversary can construct 
gadgets



ROP Attack Technique: Overview

Program Stack

Return Address 1

Return Address 2

Value 1

Value 2

Return Address 3

Program Code

REG1:

REG2:

Sequence 1

asm_ins
POP {PC}

Sequence 2

POP REG1
POP REG2
POP {PC}

Sequence 3

asm_ins
POP {PC}

SP

Corrupt Control

Structures



ROP Attack Technique: Overview

Program Stack

Return Address 1

Return Address 2

Value 1

Value 2

Return Address 3

Program Code

REG1:

REG2:

Sequence 1

asm_ins
POP {PC}

Sequence 2

POP REG1
POP REG2
POP {PC}

Sequence 3

asm_ins
POP {PC}

SP



ROP Attack Technique: Overview

Program Stack

Return Address 1

Return Address 2

Value 1

Value 2

Return Address 3

Program Code

REG1:

REG2:

Value 1

Sequence 1

asm_ins
POP {PC}

Sequence 2

POP REG1
POP REG2
POP {PC}

Sequence 3

asm_ins
POP {PC}

SP



ROP Attack Technique: Overview

Program Stack

Return Address 1

Return Address 2

Value 1

Value 2

Return Address 3

Program Code

REG1:

REG2: Value 2

Value 1

Sequence 1

asm_ins
POP {PC}

Sequence 2

POP REG1
POP REG2
POP {PC}

Sequence 3

asm_ins
POP {PC}

SP



ROP Attack Technique: Overview

Program Stack

Return Address 1

Return Address 2

Value 1

Value 2

Return Address 3

Program Code

REG1:

REG2: Value 2

Value 1

Sequence 1

asm_ins
POP {PC}

Sequence 2

POP REG1
POP REG2
POP {PC}

Sequence 3

asm_ins
POP {PC}

SP

...



Summary of Basic Idea
 Perform arbitrary computation with return-into-libc

techniques

 Approach
 Use small instruction sequences (e.g., of libc) instead of 

using whole functions

 Instruction sequences range from 2 to 5 instructions

 All sequences end with a return (POP{PC}) instruction

 Instruction sequences are chained together to a gadget

 A gadget performs a particular task (e.g., load, store, xor, 
or branch)

 Afterwards, the adversary enforces his desired actions by 
combining the gadgets



Special Aspects of ROP



Code Base and Turing-Completeness

GADGET SPACE

Application
Code

Shared
Libraries

MOV reg1, 0x1

MOV reg2, 0x2

ADD reg1, reg2

RET

RET

RET

Static Analysis



Code Base and Turing-Completeness

GADGET SPACE

Application
Code

Shared
Libraries

MOV

Arith.

CALL

Cond. 
JMP

LOADSTORE
Logic.

Uncond. 
JMP

Turing-complete language

MandatoryOptional

Static Analysis



Gadget Space on Different Architectures

B8 13 00 00 00 E9 C3 F8 FF FF

00 00 00 E9 C3

mov $0x13,%eax

jmp 3aae9

add %al,(%eax)

add %ch,%cl

ret

Intended Code

Unintended Code

GADGET SPACE
GADGET 
SPACE

Architectures with memory
alignment, e.g., SPARC, ARM

Architectures with no memory
alignment, e.g., Intel x86



Stack Pivot
[Zovi, RSA Conference 2010]

 Stack pointer plays an important role

 It operates as an instruction pointer in ROP attacks

 Challenge

 In order to launch a ROP exploit based on a heap 
overflow, we need to set the stack pointer to point to the 
heap

 This is achieved by a stack pivot



Stack Pivot in Detail

Heap

Return Address 1

Return Address 2

Return Address 3

Stack

TOP of StackSP

Function Ptr

Code

MOV SP, REG1*

POP {PC}

Stack Pivot

label_pivot:

*REG1 is controlled by the adversary and holds beginning of ROP payload



Stack Pivot in Detail

Heap

Return Address 1

Return Address 2

Return Address 3

Stack

TOP of StackSP Code

MOV SP, REG1*

POP {PC}

Stack Pivot

label_pivot:

label_pivot

*REG1 is controlled by the adversary and holds beginning of ROP payload



Stack Pivot in Detail

Heap

Return Address 1

Return Address 2

Return Address 3

Stack

TOP of Stack

SP

Code

MOV SP, REG1*

POP {PC}

Stack Pivot

label_pivot:

*REG1 is controlled by the adversary and holds beginning of ROP payload

label_pivot



ROP Variants

 Motivation: return address protection (shadow stack)

 Validate every return (intended and unintended) against 
valid copies of return addresses
[Davi et al., AsiaCCS 2011]

 Exploit indirect jumps and calls

 ROP without returns
[Checkoway et al., ACM CCS 2010]



CURRENT RESEARCH



1997

2001

2005

2007

2008

2009

2010

2011/
2012

2013

2014

ret2libc
Solar Designer

Advanced ret2libc
Nergal

Borrowed Code Chunk Exploitation
Krahmer

ROP on x86
Shacham (CCS)

ROP on SPARC
Buchanan et al (CCS)

ROP on Atmel AVR
Francillon et al (CCS)

ROP Rootkits
Hund et al (USENIX)

ROP on PowerPC
FX Lindner (BlackHat)

ROP on ARM/iOS
Miller et al (BlackHat)

ROP without Returns
Checkoway et al (CCS)

Practical ROP
Zovi (RSA Conference)

Pwn2Own (iOS/IE)
Iozzo et al / Nils

JIT-ROP
Snow et al (IEEE S&P)

Blind ROP
Bittau et al (IEEE S&P)

Out-Of-Control
Göktas et al (IEEE S&P)

Stitching Gadgets
Davi et al (USENIX)

ROP is Dangerous
Carlini et al (USENIX)

Flushing Attacks
Schuster et al (RAID)

Real-World Exploits

SELECTED



Our Work & Involvement
 Attacks

 Return-Oriented Programming without Returns 
[CCS 2010]

 Privilege Escalation Attacks on Android [ISC 2010]
 Just-In-Time Return-oriented Programming (JIT-ROP)

[IEEE S&P 2013, Best Student Paper] & [BlackHat USA 2013]
 Stitching the Gadgets [USENIX Security 2014] & [BlackHat USA 2014]
 COOP [IEEE Security & Privacy 2015]
 Losing Control [CCS 2015]

 Detection & Prevention
 ROPdefender [AsiaCCS 2011]
 Mobile Control-Flow Integrity (MoCFI) [NDSS 2012]
 XIFER: Fine-Grained ASLR [AsiaCCS 2013]
 Filtering ROP Payloads [RAID 2013]
 Isomeron [NDSS 2015]
 Readactor [IEEE Security & Privacy 2015, CCS 2015]
 HAFIX: Fine-Grained CFI in Hardware [DAC 2014, DAC 2015, DAC 2016]
 Readactor++ [CCS 2015]

In this tutorial



Main Defense Techniques
(Fine-grained) Code 

Randomization
[Cohen 1993 & Larsen et al., SoK IEEE 

S&P 2014]

Control-Flow Integrity 
(CFI)

[Abadi et al., CCS 2005 & 
TISSEC 2009]

A

B

DC

E F

Label_1

Label_2

Label_4

Label_6Label_5

Label_3

Memory

A

B

C

E

D

F

Exit(B) == Label_5



Main Defense Techniques
(Fine-grained) Code 

Randomization
[Cohen 1993 & Larsen et al., SoK IEEE 

S&P 2014]

Control-Flow Integrity 
(CFI)

[Abadi et al., CCS 2005 & 
TISSEC 2009]
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ASLR – Address Space Layout Randomization



Basics of Memory Randomization
 ASLR randomizes the base address of code/data segments

Program Memory

Heap

Library (e.g., libc)

Stack

Application Run 1

Program Memory

Heap

Stack

Application Run 2

Library (e.g., libc)

Executable
Executable

Brute-Force Attack 
[Shacham et al., ACM 

CCS 2004]

Guess Address 
of Library 
Function



Basics of Memory Randomization
 ASLR randomizes the base address of code/data segments

Program Memory

Heap

Library (e.g., libc)

Stack

Application Run 1

Program Memory

Heap

Stack

Application Run 2

Library (e.g., libc)

Executable
Executable

Disclosure Attack
e.g., [Sotirov et al., 

Blackhat 2008]

1. Exploit disclosure 
vulnerability

2. Retrieve 
runtime ADDR 

address

3. Revert all library 
addresses based on ADDR



Fine-Grained ASLR

 ORP [Pappas et al., IEEE S&P 2012]: Instruction reordering/substitution 
within a BBL

 ILR [Hiser et al., IEEE S&P 2012]: Randomizing each instruction‘s location

 STIR [Wartell et al., ACM CCS 2012] & 
XIFER [Davi et al., AsiaCCS 2013]: Permutation of BBLs

Executable/Library

Application Run 1

Code Block 1

Executable/Library

Application Run 2

Code Block 2

Code Block 3

Code Block 3

Code Block 1

Code Block 2



Just-In-Time Code Reuse: On the Effectiveness of Fine-Grained 
Address Space Layout Randomization

IEEE Security and Privacy Best Student Paper 2013
Kevin Z. Snow (UNC Chapel Hill), Lucas Davi, Alexandra 

Dmitrienko, Christopher Liebchen, Fabian Monrose (UNC 
Chapel Hill), Ahmad-Reza Sadeghi

Does Fine-Grained ASLR
Provide a Viable Defense in the Long Run? 



High-Level Idea

Code Page 1 

INS_5

Code Pointer



High-Level Idea

Code Page 1 

INS_1

INS_3

INS_5

INS_6

INS_4

INS_2

Code Pointer

4KB

Scripting Engine

Page Start

Page End

DisassembleJMP INS_10



High-Level Idea

Code Page 1 

INS_1

INS_3

INS_4

INS_5

INS_6

INS_4

INS_2

Code Pointer

Scripting Engine

Code Page 2 

INS_7

INS_9

INS_10

INS_12

INS_13

INS_11

INS_8

JMP INS_10



Code Randomization: Lessons Learned

1. Memory disclosure attacks are far more damaging than 
previously believed

→ A single address-instruction mapping leads to many leaks 
of code pages

2. Fine-grained ASLR can be bypassed with JIT-ROP

→ Enforce execute-only memory 
Software-based [Backes et al., CCS 2014]
Hardware-based: Readactor(++) [with Crane et al., 
IEEE S&P 2015 & CCS 2015] 

→ Combine code- and execution randomization
Isomeron [with Liebchen et al., NDSS 2015]

→ Mitigating memory disclosure



Control-Flow Integrity (CFI)
[Abadi et al., CCS 2005 & TISSEC 2009]

A general defense against code-reuse attacks
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Label Granularity: Trade-Offs (1/2)

 Many CFI checks are required if unique labels are 
assigned per node

A

B

DC

E F

Label_1

Label_2

Label_4

Label_6Label_5

Label_3

Exit(B) == 
[Label_3, Label_4, Label_5]

CFI Check

Basic Block

Label



Label Granularity: Trade-Offs (2/2)

 Optimization step: Merge labels to allow single CFI check

 However, this allows for unintended control-flow paths
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Label Problem for Returns
 Static CFI label checking leads to coarse-grained

protection for returns

B

C

AA‘ B‘
CALL

RET

Label_1 Label_2

Exit(C) == [Label_1, Label_2]

Program Code

Function A

CALL C
Code

Function B

CALL C
Code

Function C

Code
RETURN

A‘

B‘



Shadow Stack / Return Address Stack

B

C

AA‘ B‘
CALL

RET

Shadow Stack
Backup storage for 

return addresses

CALL RET

Backup Check

 Shadow stack allows for fine-grained return address
protection but incurs higher overhead

Exit(C) == ShadowStack[TOS]
Return Addr A‘



CFI: Benefits and Limitations



Hot Research Topic:
“Practical” (coarse-grained) 
Control Flow Integrity (CFI) 

Recently, many solutions proposed

kBouncer
[USENIX Sec’13]

ROPecker
[NDSS’14]

ROPGuard
[Microsoft EMET]

CFI for COTS 
Binaries

[USENIX Sec’13]

CCFIR
[IEEE S&P’13]

MS
BlueHat

Prize

MS
BlueHat

Prize

http://technet.microsoft.com/
en-us/security/jj653751

EMET



Open Question:
Practical and secure mitigation of code 

reuse attacks

Turing-completeness of return-oriented
programming



Negative Result:
All current (published)

coarse-grained CFI solutions can be
bypassed



Big Picture

Systematic Security 
Analysis of Coarse-
Grained CFI

Gadget 
Analysis

Exploit 
Development

Turing-complete 
gadget set

Gadgets to 
bypass heuristics

CFI Policies

Frequency of CFI Checks

Deriving a CFI policy that 
combines all schemes



1. Systematic Security Analysis of
Coarse-Grained CFI



Coarse-grained CFI leads to CFG imprecision

1

2

53

4 6

2

1

11

2 2

Reducing 
number of 

labels

Allowed paths: 1→2 and 2→1



Main Coarse-Grained CFI Policies

 CFI Policy 1: Call-Preceded 
Sequences

 Returns need to target a call-
preceded instruction

 No shadow stack required

 CFI Policy 2: Behavioral-
Based Heuristics

 Prohibit a chain of N short 
sequences each consisting 
of less than S instructions

Application

CALL A

INS_1

INS_2

CALL B

INS_3

CALL C

INS_4

RET > S

< S

< S < S < S

1 2 N

…

Threshold Setting
kBouncer:   (N=8; S<=20)
ROPecker:   (N=11; S<=6)



Coarse-Grained CFI Proposals

Last Branch 
Record (LBR)

Win API /
Critical Function

Application

POP PUSH

Stack

kBouncer
[USENIX Sec’13]

ROPecker
[NDSS’14]

ROPGuard
[Microsoft EMET]

H
O

O
K

Paging

H
O

O
K

Binary
Instrumentation

CFI for COTS 
Binaries

[USENIX Sec’13]

CCFIR
[IEEE S&P‘13]



Deriving a Combined CFI Policy
CFI Policy kBouncer

[USENIX 
Sec. 2013]

ROPecker
[NDSS 
2014]

ROPGuard
[Microsoft 
EMET]

CFI for COTS 
Binaries
[USENIX 
Sec. 2013]

Combined 
CFI Policy

CFI Policy 1
Call-Preceded Sequences

CFI Policy 2
Behavioral-Based Heuristics

Time of CFI Check WinAPI 2 Page 
Sliding 

Window/
Critical 

Functions

WinAPI/
Critical 

Functions

Indirect
Branch

Any Time

No Restriction CFI Policy

Here only the core policies shown. However, we consider all other 
deployed policies in our analysis.



2. Gadget Analysis



Methodology

Common 
Library

kernel32.dll

Sequence 
Subset 1

Sequence 
Subset n

MOV

ADD

ESP

CALL

LNOP

XOR

Sequence 
Finder (IDA Pro)

List of Call-
Preceded 

Sequences

Sequence Filter
(D Program)

Provide filters on
Reg, Ins, Opnd, Length

Gadget Generation 
(manual)

Search for Gadgets

LOAD

STORE



(Excerpt of) Turing-Complete Gadget Set in 
CFI-Protected kernel32.dll

Gadget Type CALL-Preceded Sequence
ending in a RET instruction

LOAD
Register

EBP := pop ebp
ESI := pop esi; pop ebp
EDI := pop edi; leave
ECX := pop ecx; leave
EBX := pop edi; pop esi; pop ebx; pop ebp
EAX := mov eax,edi; pop edi; leave
EDX := mov eax,[ebp-8]; mov edx,[ebp-4]; pop edi; leave

LOAD/STORE
Memory

LD(EAX) := mov eax,[ebp+8]; pop ebp
ST(EAX) := mov [esi],eax; xor eax,eax; pop esi; pop ebp
ST(ESI) := mov [ebp-20h],esi
ST(EDI) := mov [ebp-20h],edi

Arithmetic/
Logical

ADD/SUB := sub eax,esi; pop esi; pop ebp
XOR := xor eax,edi; pop edi; pop esi; pop ebp

Branches unconditional branch 1 := leave
unconditional branch 2 := add esp,0Ch; pop ebp
conditional LD(EAX) := neg eax; sbb eax,eax; and eax,[ebp-4];        
………………………………………………………….leave



Long-NOP Gadget

ROP 
Gadget 1

Store 
Registers

Prepare
Long NOP

Long 
NOP

Reset
Registers

ROP 
Gadget 2

…

ESI

EDI

EBX

Stack

Static
Constants

Arbitrary Data 
Area (36 Bytes)

ESI

EDI



3. Exploit Development

Adobe Reader 9.1 
CVE-2010-0188 

MPlayer Lite r33064 m3u 
Buffer Overflow Exploit

Original exploits
detected by coarse-

grained CFI

Our instrumented
exploits bypass coarse-

grained CFI



Coarse-Grained CFI: Lessons Learned

1. Too many call sites available

→ Restrict returns to their actual caller (shadow stack)

2. Heuristics are ad-hoc and ineffective

→ Adjusted sequence length leads to high false positive 

3. Too many indirect jump and call targets

 Resolving indirect jumps and calls is non-trivial

→ Compromise: Compiler support 



CURRENT RESEARCH
What’s next?

Hardware-Assisted CFI



HAFIX: Hardware Flow Integrity Extensions
[O. Arias, L. Davi, M. Hanreich, Y. Jin, P. Koeberl, D. Paul, 

A.-R. Sadeghi, D. Sullivan, DAC 2015, Best Paper]



Design Decisions: Why CFI Processor Support? 

CFI Processor Support based on Instruction set 
architecture (ISA) extensions

Dedicated CFI instructions

No offline training phase

Instant attack detection

CFI control state

Binding of CFI data to CFI state and instructions



Big Picture

State 0
Normal Execution

Function Calls

Indirect Jumps

Function Returns

CFI State
Only CFI instructions 

allowed

CFI Check Call

CFI Check Jump

CFI Check Return



Example Policy
Returns can only target call sites of

functions that are currently executing



HAFIX State Model

State 0
Normal Execution

State 1
Function Entry

Direct and 
Indirect Calls

CFIDEL label_1

State 2
Function Exit

CFIBR label_1

CFIRET label_0

CFI Label State

State 3
Attack Detection

STOP Execution

No CFIBR issued

No CFIRET issued or 
inactive label used

Valid CFIBR issued

Valid CFIRET issued

Activate label

Deactivate label
Return

Check label

label_0

label_1

107/3
6



Remarks

 Implementation on Intel Siskiyou Peak and
SPARC-LEON3

 High efficiency 1-2%

 Current prototype supports different levels of
CFG precision [visit our DAC‘16 talk on Thursday, 
June 09, 3:30pm - 5:30pm | 19AB ]



Conclusion

 Code-reuse attacks are prevalent

 Google and Microsoft take these attacks seriously

 Many real-world exploits

 Existing solutions can be bypassed

 Good News

 Many innovative defense techniques have been 
proposed

 Promising new directions

 Memory safety based on code-pointer integrity 
[Kuznetsov et al., OSDI 2014]
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