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Abstract
Recent attacks exploiting errors in smart contract code had

devastating consequences thereby questioning the benefits of
this technology. It is currently highly challenging to fix er-
rors and deploy a patched contract in time. Instant patching is
especially important since smart contracts are always online
due to the distributed nature of blockchain systems. They also
manage considerable amounts of assets, which are at risk and
often beyond recovery after an attack. Existing solutions to
upgrade smart contracts depend on manual and error-prone pro-
cesses. This paper presents a framework, called EVMPATCH,
to instantly and automatically patch faulty smart contracts.
EVMPATCH features a bytecode rewriting engine for the pop-
ular Ethereum blockchain, and transparently/automatically
rewrites common off-the-shelf contracts to upgradable con-
tracts. The proof-of-concept implementation of EVMPATCH
automatically hardens smart contracts that are vulnerable to
integer over/underflows and access control errors, but can be
easily extended to cover more bug classes. Our evaluation on
14,000 real-world contracts demonstrates that our approach
successfully blocks attack transactions launched on contracts,
while keeping the intended functionality of the contract intact.
We perform a study with experienced software developers,
showing that EVMPATCH is practical, and reduces the time
for converting a given Solidity smart contract to an upgradable
contract by 97.6 %, while ensuring functional equivalence to
the original contract.

1 Introduction

Smart contracts are used in modern blockchain systems to
allow nearly arbitrary (Turing-complete) business logic to be
implemented. They enable autonomous management of cryp-
tocurrency or tokens and have the potential to revolutionize
many business applications by removing the need for a trusted
(potentially malicious) third party, e.g., in applications for
payments, insurances, crowd funding, or supply chains. Due to
their ease of use and the high monetary value (cryptocurrency)

some of these contracts hold, smart contracts have become
an appealing target for attacks. Programming errors in smart
contract code can have devastating consequences as an attacker
can exploit these bugs to steal cryptocurrency or tokens.

Recently, the blockchain community has witnessed several
incidents due smart contract errors [7, 39]. One especially
infamous incident is the “TheDAO” reentrancy attack, which
resulted in a loss of over 50 million US Dollars worth of
Ether [31]. This led to a highly debated hard-fork of the
Ethereum blockchain. Several proposals demonstrated how
to defend against reentrancy vulnerabilities either by means of
offline analysis at development time or by performing run-time
validation [16, 23, 32, 42]. Another infamous incident is the
parity wallet attack [39]. In this case, an attacker moved a
smart contract into a state, where the currency held by the
contract could not be accessed anymore. This resulted in a
total of about 500,000 Ether to be stuck in smart contracts due
to an access control error [38]. Automatic detection of such
access control vulnerabilities has been previously studied in
the context of automated exploit generation [20, 28]. Further,
integer overflow bugs constitute a major vulnerability class
in smart contracts. Such bugs occur when the result of an
arithmetic operation has a longer width than the integer type
can hold [34]. According to a study by Torres et al. [13]
more than 42,000 contracts suffer from an integer bug. They
especially affect so-called ERC-20 Token contracts, which are
leveraged in Ethereum to create subcurrencies. Interestingly,
several of the disclosed vulnerabilities were actually exploited
leading to substantial token and ether losses.

These attacks have fueled interest in the community to
enhance the security of smart contracts. In this respect, a
number of solutions ranging from devising better development
environments to using safer programming languages, formal
verification, symbolic execution, and dynamic runtime
analysis have been proposed in the last few years [19, 23, 32].
We point out that all these solutions only aim to prove the
correctness or absence of a certain type of vulnerability [19,
23, 42] and as such cannot be used to protect already deployed
(legacy) contracts. Although some contracts integrate upgrade



mechanisms (see § 2), once a particular contract has been
flagged as vulnerable, it is unclear how to automatically patch it
and test the effectiveness of the patched contract. Even though
manually patching contracts on the source-code level seems
plausible, the patch may unexpectedly break compatibility and
make the upgraded contracts unusable. For example, given the
special storage layout design of Ethereum, the delegatecall-
proxy pattern requires developers to ensure that the patched
version of the contract is compatible with the previously de-
ployed version. Even small changes like changing the ordering
of variables in the source code can break this compatibility.
This additionally poses the challenge that developers must
adhere to strict coding standards [46] and have to use the same
exact compiler version. As a result, patching smart contract
errors is currently a time-consuming, cumbersome, and error-
prone process. For instance, while patching the Parity multisig
wallet contract, a vulnerability was introduced. An attacker
was able to become the owner of the newly deployed library
contract. This allowed the attacker to destroy the contract and
break all contracts that depend on the multisig wallet library
contract. As a result, a considerable amount of Ether is now
locked in those broken contracts [38]. On top of that, patching
smart contract bugs is highly time-critical. In contrast to errors
discovered in PC or mobile software, smart contract errors are
unique from an attacker’s point of view as (1) smart contracts
are always online on the blockchain, (2) they usually hold
a significant amount of assets, and (3) an attacker does not
need to consider other environmental variables (e.g., software
and library version, network traffic analysis, spam or phishing
mails to trigger the exploit through a user action).

Contributions. In this paper, we address the problem of auto-
mated and timely patching of smart contracts to aid developers
to instantly take action on reported smart contract errors. We
introduce a novel patching framework (in § 3) that features a
bytecode-rewriter for Ethereum smart contracts, is indepen-
dent of the source programming language and works on unmod-
ified contract code. Our framework, dubbed EVMPATCH, uti-
lizes the bytecode-rewriting engine to ensure that patches are
minimally intrusive and that the newly patched contract is com-
patible with the original contract. In particular, our framework
automatically replays transactions on the patched contract to

1. test the functional correctness of the patched contract with
respect to previous transactions pertaining to the contract,

2. identify potential attacks, i.e., developers can determine
whether their vulnerable contract has been attacked in
the past.

EVMPATCH uses a best effort approach to ensure the
introduced patch does not break functionality by testing with
previously issued transactions to the contract and optionally
also developer provided unit tests. While such a differential
testing approach cannot provide a formal proof on the correct-
ness of the patched contract, it works without requiring a formal
specification. Our experiments (see § 5.2.1) show that this
approach is sufficient in practice to identify broken patches.

By applying patches on the bytecode level, EVMPATCH
is independent of the used programming language/compiler
and compiler version. That is, EVMPATCH supports any
off-the-shelf Ethereum smart contract code. We employ
bytecode writing to ensure minimally intrusive patches, that
are compatible by design with the contract’s storage layout, We
argue that source-level patching is not easily usable in an auto-
mated patching process that we propose. However, as for any
approach working on either the binary or bytecode-level, we
had to tackle several technical challenges (§ 4). Furthermore,
EVMPATCH automatically converts the original contract to
use the delegatecall-proxy pattern. As such, EVMPATCH is
able to automatically deploy newly patched contracts in a fully
automated way without requiring any developer intervention.

While in principle EVMPATCH can support patching of
different classes of vulnerabilities (see § 4.5), our proof-of-
concept implementation targets the two major classes of access
control and integer overflow (§ 5) bugs. The latter have been
repeatedly exploited in high-value ERC-20 contracts [30],
whereas the former has been abused in the Parity wallet
attack [39].

To evaluate EVMPATCH in terms of performance, effec-
tiveness, and functional correctness, we apply EVMPATCH to
14,000 real-world vulnerable contracts. To this end, we used
the patch testing component of the EVMPATCH framework to
re-play all existing transactions to the original contract on the
patched contract. This allows us to provide in-depth investi-
gation of several actively exploited smart contracts, e.g., token
burning and history of attack transactions (before and after
public disclosure). For a number of contracts we investigated
in our evaluation, we found that EVMPATCH would have
blocked several attacks that happened after public disclosure of
the vulnerability. This shows that even though those contracts
were officially deprecated, they were still used by legitimate
users and exploited by malicious actors. As such, there is
an immediate need for tooling, as provided by EVMPATCH,
which allows the developers of smart contracts to efficiently
patch their contracts. Our evaluation also covers important
practical aspects such as gas and performance overhead (i.e.,
the costs for executing transactions in Ethereum). The gas
overhead for all our patched contracts was below 0.01 US$
per transaction and the performance overhead negligible.

To assess the usefulness of EVMPATCH, we conducted a
sophisticated developer study1 that focuses on comparing the
usability of patching and deploying an upgradable contract
with and without EVMPATCH (§ 5.3). Our study reveals that
developers required 62.5 min (median) to manually (without
EVMPATCH) convert a simple smart contract, which imple-
ments common Wallet functionality in about 80 lines of code,
into an upgradable smart contract. In spite of this considerable
time, none of them performed a correct conversion, leading to
broken and potentially vulnerable contracts. As such, this time

1See github.com/uni-due-syssec/evmpatch-developer-study for details

https://github.com/uni-due-syssec/evmpatch-developer-study


measurements must be seen as a lower bound, as correctly
converting a more complex contract will take even more time.
In contrast, the same task was performed by the developers
using EVMPATCH in 1.5 min (median)—a reduction by
97.6 %—while producing a correct upgradable contract.

2 Background

In this section, we provide background information on the
Ethereum Virtual Machine (EVM), binary rewriting, and some
common contract upgrade strategies.
EVM & Smart Contracts: At the core of the Ethereum
blockchain system lies a custom virtual machine, dubbed
Etherum Virtual Machine (EVM), which executes Ethereum
smart contracts. EVM consists of a simple stack-based virtual
machine with a custom instruction format. Every instruction is
represented as a one-byte opcode. Arguments are passed on the
data stack. The only exception are the push instructions, which
are used to push constants onto the stack. These constants are
encoded directly into the instruction bytes. Furthermore, the
EVM follows the Harvard architecture model and separates
code and data into different address spaces. In fact, the EVM
features different address spaces for different purposes: the
code address space, which contains a smart contract’s code and
is considered immutable, the storage address space for storing
global state, and the memory address space for temporary data.

In the Ethereum network, a smart contract must be executed
by every miner and every full node in the network to compute
and verify the state before and after a block. Ethereum features
a mechanism to limit the execution time per smart contract and
reward miners for executing smart contracts: the so-called gas.
Every EVM instruction requires a certain gas budget to execute.
The transaction sender selects the price per gas unit in Ether and
when a transaction is included into a block the corresponding
Ether is transferred to the miner as a reward. Minimizing the
gas required for executing a contract is important as it indirectly
minimizes the cost of operating a smart contract in Ethereum.

Smart contracts are developed in an object-oriented fashion,
i.e., every smart contract has a defined interface of functions:
the contract’s ABI (Application Binary Interface). Whenever
a smart contract calls another smart contract, it utilizes one of
the call instructions, such as CALL or STATICCALL. The called
contract will then process the provided input and update its
own state accordingly. A contract cannot directly access the
state (i.e., the storage area) of other contracts and must always
use function calls according to the ABI to retrieve any data
from another contract.

In contrast to the regular CALL instruction, the
DELEGATECALL instruction will execute the called con-
tract’s code in the context of the caller contract. This
instruction was introduced to implement library contracts, i.e.,
common functionality can be deployed once to the blockchain
and multiple contracts can rely on one library contract. This
means that the callee, i.e., the library contract, has full access

to the state (the storage) and the Ether funds of the caller. As
such, a contract that utilizes a DELEGATECALL instruction must
fully trust the callee.
Binary Rewriting: Binary rewriting is a well-known
technique to instrument programs after compilation. Binary
rewriting has also been applied to retrofit security hardening
techniques such as control-flow integrity, to compiled
binaries [8], but also to dynamically apply security patches
to running programs [29]. For binary rewriting on traditional
architectures two flavors of approaches have been developed:
static and dynamic rewriting.

Dynamic approaches [22] rewrite code on-the-fly, i.e.,
while the code is executing. This avoids imprecise static
analysis on large binaries. However, dynamic binary rewriting
requires an intermediate layer, which analyzes and rewrites
code at runtime. Since the EVM does not support dynamic
code generation or modification, it is not possible to apply
this approach efficiently in Ethereum. In contrast, static
binary rewriting [5, 21] is applicable to Ethereum as it works
completely offline. It relies on static analysis to recover
enough program information to accurately rewrite the code.
Contract Upgrade Strategies: Ethereum treats the code of
smart contracts as immutable once they are deployed on the
blockchain2. To remedy this, the community came up with
strategies for deploying upgraded smart contracts [11, 41, 45].
The most naive approach is to deploy the patched contract at a
new address and migrate the state of the original contract to it.
However, state migration is specific to the contract and must
be manually implemented by the developers of the contract.
It requires the contract developers to have access to all the
internal state of the old contract, and a procedure in the new
contract to accept state transfers. To avoid state migration,
developers can also use a separate contract as a data storage
contract, which is sometimes referred to as the eternal storage
pattern [10, 45]. However, this adds additional gas overhead
since every time the logic contract needs to access data it must
perform a costly external call into the data storage contract.

A more common strategy is to write contracts with the proxy-
pattern, with the most favorable version being the delegatecall-
proxy pattern. Here, one smart contract is split into two
different contracts, one for the code and one for data storage:
i) an immutable proxy contract, which holds all funds and all
internal state, but does not implement any business logic; ii) a
logic contract, which is completely stateless and implements
all of the actual business logic, i.e., this contract contains the
actual code that governs the actions of the contract. The proxy
contract is the entry point of all user transactions. It has im-
mutable code and its address remains constant over the lifetime
of the contract. The logic contract implements the rules, which
govern the behavior of the smart contract. The proxy contract
forwards all function calls to the registered logic contract using
the DELEGATECALL instruction. This instruction is used to give

2Except for the selfdestruction mechanism to kill a smart contract.



the logic contract access to all internal state and funds stored
in the proxy contract. To upgrade the contract, a new logic
contract is deployed and its address is updated in the proxy con-
tract. The proxy contract then forwards all future transactions
to the patched logic contract. As a result, deploying upgraded
contracts does not require any data migration, as all data is
stored in the immutable proxy contract. Moreover, the upgrad-
ing process is also transparent to users, as the contract address
remains the same. Although existing blockchain platforms do
not provide mechanisms to upgrade smart contracts, the usage
of this proxy pattern allows EVMPATCH to quickly upgrade a
contract with negligible costs (in terms of gas consumption).

3 Design of EVMPatch

In this section, we introduce the design of our automated patch-
ing framework to timely patch and harden smart contracts. Our
framework operates on unmodified smart contracts and is inde-
pendent of the source code programming language, as it does
not require source code. At its core, our framework utilizes a
bytecode rewriter to apply minimally intrusive patches to EVM
smart contracts. Combined with a proxy-based upgradable
smart contract, this bytecode rewriting approach allows the
developer to automatically introduce patches and deploy them
on the blockchain. One major advantage of this approach
is that when new attack types are discovered or bug finding
tools improve, the contract can be automatically re-checked,
patched, and re-deployed in a short amount of time and with
minimal developer intervention. EVMPATCH is typically
executed on a developer’s machine and is continuously running
new and updated vulnerability detection tools. This can also
include dynamic analysis tools, which analyze transactions
that are not yet included in a block, but already available to
the Ethereum network. Whenever one of the analysis tools
discovers a new vulnerability, EVMPATCH automatically
patches the contract, tests the patched contract and deploys it.

3.1 Design Choices
The proxy-pattern makes it possible to easily deploy a
patched smart contract in Ethereum. However, it neither
generates a patched version nor features functional tests on
the patched contract. EVMPATCH fills this gap by providing a
comprehensive framework and toolchain to automatically and
timely patch and test the effectiveness of the generated patch.

As shown in Table 1, there are two possible strategies for au-
tomatically generating a patch in Ethereum: static rewriting of
source or EVM bytecode. At first glance, source-code patching
seems to be the option of choice as developers have access to
source code, they are able to inspect the source code changes,
and can even do adjustments if the automated approach
introduces undesired changes. However, in Ethereum, there is
one major challenge when applying source code rewriting: one
needs to carefully preserve the storage layout. Otherwise, the

patched contract will corrupt its memory and fail or (worse)
introduce dangerous bugs. Namely, some changes in the
source code can break the contract compatibility, even though
the changes do not break the logic of the contract.

To put things into context, statically-sized variables are
laid out contiguously in storage starting from address 0; and
contiguous variables with size less than 32 B can be packed
into a single 32 B storage slot [9]. As a result, any changes
to re-order, add, or remove variables in the source-code may
look harmless, but on the memory level, such changes will
lead to mapping of variables to wrong and unexpected storage
addresses. In other words, changes in variable declaration
corrupt the internal state of the contract, as the legacy contract
and the patched contract have different storage layouts.

In contrast, bytecode rewriting does not suffer from this
deficiency as many bug classes only require changes on the
level of EVM instructions (see §5) avoiding any error-prone
storage-layout changes. Another reason to opt for bytecode
rewriting are existing smart contract vulnerability detection
tools. As of now, the majority of them operate on the EVM
level [13, 20, 23, 24, 32] and report their findings on the EVM
level. A bytecode rewriting approach can exploit the reports
of these analysis tools to directly generate an EVM bytecode-
based patch. Finally, if source-code rewriting is utilized, the
developer has limited possibilities to perform thorough testing
on the effectiveness of the patched contract. In particular,
checking the patched contract against old transactions (includ-
ing transactions that encapsulate attacks) are more feasible
on bytecode level. That is, transaction testing naturally would
still require analysis on the bytecode level to reverse-engineer
the attack transactions and how they fail against the patched
contract. Bytecode-rewriting allows developers to directly
match the rewritten bytecode instructions to the attack
transactions making forensic analysis feasible. Given all these
reasons, we decided to opt for bytecode rewriting.

3.2 Framework Design
Our framework depicted in Figure 1 consists of the following
major components: (1) the vulnerability detection engine
consisting of automatic analysis tools and public vulnerability
disclosures, (2) bytecode rewriter to apply the patch to the
contract, (3) the patch testing mechanism to validate the patch

Table 1: Comparison of rewriting strategies in Ethereum

Source Rewriting Bytecode Rewriting

Corrupts storage-layout Preserves storage layout
Checking modifications by
human analyst feasible

Human analysis of bytecode
changes challenging

Limited tool support for
vulnerability analysis

Easy integration of vulnerabil-
ity analysis tools

Patch testing based on prior
transactions challenging

Easy patch testing with prior
transactions
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Figure 1: Architecture of EVMPATCH

on previous transactions, and (4) the contract deployment
component to upload the patched version of the contract. At
first, the vulnerability detection engine identifies the location
and type of the vulnerability. This information is then passed
to the bytecode rewriter, which patches the contract according
to previously defined patch templates. The patched contract
is thereafter forwarded to the patch tester, which replays all
past transactions to the contract. That said, we do not only
patch the contract, but we allow the developer to retrieve
a list of transactions that exhibit a different behavior and
outcome between the original and patched contract. These
transactions serve as an indicator for potential attacks on
the original contract. If the list is empty, our framework
automatically deploys the patched contract instantly on the
Ethereum blockchain. Next, we will provide a more detailed
description of the four major components of our design.

Vulnerability Detection. Before being able to apply patches,
our framework needs to identify and detect vulnerabilities.
To do this, our framework leverages existing vulnerability
detection tools such as [13, 16, 20, 23, 28, 32, 42]. For
vulnerabilities that are not detected by any existing tool, we
require that a developer or a security consultant creates a
vulnerability report. In our system, the vulnerability detection
component is responsible to identify the exact address of the
instruction, where the vulnerability is located, and the type of
vulnerability. This information is then passed to the bytecode
rewriter, which patches the contract accordingly.

Bytecode Rewriter. In general, static binary rewriting tech-
niques are well suited for applying patches in Ethereum since
smart contracts have comparably small code size: typically in
the range of about 10 KiB. Furthermore, EVM smart contracts
are always statically linked to all library code. It is not possible
for a contract to dynamically introduce new code into the code
address space. This makes the reliance on binary rewriting
techniques simpler compared to traditional architectures,
where dynamically linked libraries are loaded at runtime.
However, some smart contracts still utilize a concept similar to
dynamically linked libraries: dedicated EVM call instructions
allow a contract to switch to a different code address space.
We tackle this peculiarity by applying our bytecode rewriter
to both the contract itself and the library contract.

The stack-based architecture of the EVM requires special
attention when implementing a patch: all address-based
references to any code or data in the code address space of the
smart contract must be either preserved or updated when new
code is inserted into the code address space. Such references
cannot be easily recovered from the bytecode. To tackle this
challenge, EVMPATCH utilizes a trampoline-based approach
for adding new EVM instructions into empty code areas. The
implementation details will be described in § 4.

To implement a patch, the bytecode rewriter processes the
bytecode of the vulnerable contract as well as the vulnerability
report. The rewriting is based on a so-called patch template
which is selected according to the vulnerability type and
adjusted to work with the given contract.

Patch Templates. In EVMPATCH,we utilize a template-based
patching approach: for every supported class of vulnerabilities,
a patch-template is integrated into EVMPATCH. This patch
template is automatically adapted to the contract that is being
patched. We create generic patch templates such that they can
be easily applied to all contracts. EVMPATCH automatically
adapts the patch template to the contract at hand by replacing
contract-specific constants (i.e., code addresses, function
identifier, storage addresses). Patch templates for common
vulnerabilities, such as integer overflows, are shipped as part
of EVMPATCH, and a typical user of EVMPATCH will never
interact with the patch templates. However, optionally, a
smart contract developer can also inspect or adapt existing
patch templates or even create additional patch templates for
vulnerabilities that are not yet supported by EVMPATCH.

Patch Tester. As smart contracts directly handle assets (such
as Ether), it is critical that any patching process does not
impede the actual functionality of a contract. As such, any
patch must be tested thoroughly. To address this issue, we
introduce a patch testing mechanism which is based (1) on the
transaction history recorded on the blockchain and (2) optional
developer supplied unit tests. At this point, we exploit the fact
that any blockchain system records all previous executions of
a smart contract, i.e., transactions in Ethereum. In our case, the
patch tester re-executes all existing transactions and optionally
any available unit test and verifies that all transactions of the
old legacy and the newly patched contract behave consistently.



The patch tester detects any behavioral discrepancy between
the old legacy and the newly patched contract and reports a list
of transactions with differing behavior to the developer. That
said, as a by-product, our patch testing mechanism can be used
as a forensic attack detection tool. Namely, while executing
the patching process, the developer will also be notified of any
prior attacks that abuse any of the patched vulnerabilities and
can then act accordingly. In case both versions of the contract
behave the same way, the patched contract can be automatically
deployed. Otherwise, the developer must investigate the list
of suspicious transactions and thereafter invoke the contract
deployment component to upload the patched contract. The list
of suspicious transactions may not only serve as an indicator
of potential attacks, but may reveal that the patched contract
is not functionally correct, i.e., the patched contract shows a
different behavior on benign transaction. In § 5, we provide
a thorough investigation on real-world, vulnerable contracts
to demonstrate that EVMPATCH successfully applies patches
without breaking the original functionality of the contract.
Contract Deployment. As discussed in § 2, the delegatecall-
proxy based upgrade scheme is the option of choice to enable
instant contract patching. Thus, EVMPATCH integrates this
deployment approach utilizing a proxy contract as the primary
entry point for all transactions with a constant address. Before
the first deployment, EVMPATCH transforms the original un-
modified contract code to utilize the delegatecall-proxy pattern.
This is done by deploying a proxy contract, which is immutable
and assumed to be implemented correctly3. The original byte-
code is then converted to a logic contract using the bytecode
rewriter with only minor changes to the original code. The
logic contract is then deployed alongside the proxy contract.
Patch Deployment. Finally, when the contract is patched
and after the patch is tested by the patch tester component,
EVMPATCH can deploy the newly patched contract. Our
upgrade scheme deploys the newly patched contract code
to a new address and issues a dedicated transaction to the
previously deployed proxy contract, which switches the
address of the logic contract from the old vulnerable version
to the newly patched version. Any further transactions are now
handled by the patched logic contract.
Human Intervention. EVMPATCH is designed to be fully
automated. However, there are a few scenarios, where
developer intervention is needed if (1) the vulnerability report
relates to a bug class that is not yet supported by EVMPATCH,
or (2) the patch tester reports at least one transaction that fails
due to the newly introduced patch and the failing transaction
is not a known attack transaction, (3) the patch tester reports
that at least one known attack transaction is not prevented by
the newly introduced patch.

If a bug class is not supported, EVMPATCH informs the
developer about the unsupported vulnerability class. Since
EVMPATCH is extensible, it easily allows developers to pro-

3EVMPATCH comes with a well audited default proxy contract that is
only 80 lines of Solidity code.

vide custom patch templates thereby allowing quick adaption
to new attacks against smart contracts. More specifically,
EVMPATCH supports multiple formats for custom patch tem-
plates: EVM instructions, a simple domain-specific language
that resembles Solidity expressions and allows developers
to enforce pre-conditions on functions (similar to Solidity
modifiers). We performed a developer study in Section 5.3
to demonstrate that writing a patch template is feasible and
more successful than manually patching a contract.

If the patch tester finds a new failing transaction, the
developer has to analyze whether a new attack transaction has
been discovered or a legitimate transaction has failed. For a
newly discovered attack transaction, EVMPATCH adds this
transaction to the list of attacks and proceeds. Otherwise, the
developer investigates why the legitimate transaction failed.
As our evaluation in § 5.2.2 shows, such cases typically occur
due to inaccurate vulnerability reports, i.e., wrongly reported
vulnerabilities rather than faulty patching. Thus, the developer
can simply blacklist the wrongly reported vulnerable code
locations to avoid patching at these locations.

These manual interventions typically only need quick code
reviews or debugger sessions. We believe even moderately ex-
perienced Solidity developers can perform these tasks as no de-
tailed knowledge about the underlying bytecode rewriting sys-
tem is needed (see also § 5.3 on our developer study). As such,
EVMPATCH positions itself as a tool to enable more develop-
ers to securely program and operate Ethereum smart contracts.

4 EVMPatch Implementation

In this section, we describe the implementation of EVM-
PATCH: in § 4.1, we discuss engineering challenges for
bytecode rewriting in Ethereum. Thereafter, we desribe the
implementation of the bytecode rewriter (§ 4.2), the patch
testing feature (§ 4.3), and the contract deployment mechanism
(§ 4.4). We conclude this section with a discussion on possible
applications regarding smart contract errors in § 4.5.

4.1 Challenges of Bytecode Rewriting

There are several unique challenges that must be solved when
rewriting EVM bytecode: we need to handle static analysis of
the original EVM bytecode, and tackle several particularities
of Solidity contracts and the EVM.

Similar to traditional computer architectures, EVM byte-
code uses addresses to reference code and data constants in
the code address space. Hence, when modifying the bytecode,
the rewriter must ensure that address-based references are
correctly adjusted. To do so, a rewriter typically employ two
static analysis techniques: control-flow graph (CFG) recovery
and subsequent data-flow analysis. The latter is necessary to
determine which instructions are the sources of any address
constants utilized in the code. For the EVM bytecode, two



classes of instructions are relevant in this context: code jumps
and constant data references.
Code Jumps. The EVM features two branch instructions:
JUMP and JUMPI. Both take the destination address from
the stack. Note that function calls inside the same contract
also leverage JUMP and JUMPI. That said, there is no explicit
difference between local jumps inside a function and calls
to other functions. The EVM also features dedicated call
instructions, but these are only used to transfer control to
a completely separate contract. Hence, they do not require
modification when rewriting the bytecode.
Constant Data References. The so-called CODECOPY instruc-
tion is leveraged to copy data from the code address space
into the memory address space. A common example use-case
are large data constants such as strings. Similar to the jump
instructions, the address from which memory is loaded is
passed to the CODECOPY instruction via the stack.

Handling both types of instructions is challenging due to the
stack-based architecture of the EVM. For instance, the target
addresses of jump instructions are always provided on the
stack. That is, every branch is indirect, i.e., the target address
cannot be simply looked up by inspecting the jump instruction.
Instead, to resolve these indirect jumps, one needs to deploy
data-flow analysis techniques to determine where and which
target address is pushed on the stack. For the majority of
these jumps, one can analyze the surrounding basic block4

to trace back where the jump target is pushed on the stack.
For example, when observing the instructions PUSH2 0xdb1;
JUMP, we can recover the jump target by retrieving the address
(0xdb1) from the push instruction.

However, many contracts contain more complicated code
patterns, primarily because the Solidity compiler also supports
calling functions internally without utilizing a call instruction.
Recall that, in the EVM, a call instructions perform similarly
to remote-procedure calls. To optimize code size and facilitate
code re-use, the Solidity compiler introduced a concept where
functions are marked as internal. These functions cannot be
called by other contracts (private to the contract) and follow
a different calling convention. Since there are no dedicated
return and call instruction for internal functions, Solidity uti-
lizes the jump instruction to emulate both. As such, a function
return and a normal jump cannot be easily distinguished. This
makes it challenging to (1) identify internal functions and
(2) build an accurate control-flow graph of the contract.

When rewriting an EVM smart contract, both the jump in-
structions and the codecopy instruction need to be considered
in the bytecode rewriter. The obvious strategy to rewrite smart
contracts is to fix-up all constant addresses in the code to reflect
the new addresses after inserting new instructions or removing
old instructions. However, this strategy is challenging because
it requires accurate control-flow graph recovery and data-flow

4A basic block is sequence of EVM instructions that terminate in a branch.
The branch connects one basic block to subsequent basic blocks in the CFG
of the EVM code.

analysis, which needs to deal with particularities of EVM
code, such as internal function calls. In the research area of
binary rewriting of traditional architectures, a more pragmatic
approach has been developed: the so-called trampoline
concept [8, 21]. We utilize this approach in our rewriter
and avoid adjusting addresses. Whenever our rewriter must
perform changes to a basic block, e.g., inserting instructions,
our rewriter replaces the basic block with a trampoline that
immediately jumps to the patched copy. Hence, any jump
target in the original code stays the same and all data constants
are kept at their original addresses. We describe this process
in more detail in the subsequent section.

4.2 Bytecode Rewriter Implementation
We implemented a trampoline-based rewriter in Python and
utilize the pyevmasm5 library for disassembling and assem-
bling raw EVM opcodes. Our trampoline-based bytecode
rewriter works on the basic block level. When an instruction
needs to be instrumented, the whole basic block is copied to
the end of the contract. The patch is then applied to this new
copy. The original basic block is replaced with a trampoline,
i.e., a short instruction sequence that immediately jumps to
the copied basic block. Whenever the contract jumps to the
basic block at its original address, the trampoline is invoked
redirecting execution to the patched basic block by means of
a jump instruction. To resume execution, the final instruction
of the instrumented basic block issues a jump back into the
original contract code. While the trampoline-based approach
avoids fixing up any references, it introduces additional jump
instructions. However, as we will show, the gas cost associated
with these additional jumps is negligible in practice (see § 5).

To ensure correct execution, we must still compute at least
a partial control-flow graph, starting from the patched basic
block. This is necessary to recover the boundaries of the basic
blocks that are patched and the following basic blocks that are
connected by a so called fall-through edge. Not all basic blocks
terminate with an explicit control-flow instruction: Whenever
a basic block ends with a conditional jump instruction (JUMPI)
or simply does not end with a control-flow instruction, there
is an implicit edge (i.e., fall-through) in the control-flow graph
to the instruction at the following address.
Handling Fall-Through Edge. To handle the fall-through
edge, two cases must be considered. When the basic block
targeted by the fall-through edge starts with a JUMPDEST in-
struction, the basic block is marked as a legitimate target for
regular jumps in the EVM. In this case, we can append an
explicit jump to the rewritten basic block at the end of the con-
tract and ensure that execution continues at the beginning of
the following basic block in the original contract code. In case
that the following basic block does not begin with a JUMPDEST
instruction, the EVM forbids explicit jumps to this address.
In the control-flow graph, this means that this basic block can

5github.com/crytic/pyevmasm
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Figure 2: Control-flow graph of original and rewritten code.

only be reached with a fall-through edge. To handle this case,
our rewriter copies the basic block to the end of the contract
right behind the rewritten basic block constructing another fall-
through edge in the control-flow graph of the rewritten code.

Figure 2 shows an example for how our rewriter changes
the control-flow graph of the original contract. The ADD
instruction is replaced with a checked add routine that
additionally performs integer overflow checks. We call the
address of the ADD instruction the patch point. The basic block,
which contains the patch point, is replaced with a trampoline.
In this case, it immediately jumps to the basic block at 0xFFB.
This basic block, which is placed at the end of the original
contract, is a copy of the original basic block at 0xAB, but with
the patch applied. Since the basic block is now at the end of the
contract, the bytecode rewriter can insert, change, and remove
instructions in the basic block without changing any address in
code that is located at higher-numbered addresses. We fill the
rest of the original basic block with the INVALID instruction to
ensure the basic block has the exact same size as the original
basic block. The basic block at 0xCD is connected to the prior
basic block by means of a fall-through edge. However, this
basic block starts with a JUMPDEST instruction and as such is a
legitimate jump target. Hence, the rewriter then appends a jump
to the patched basic block at 0xFFB which ensures execution
continues in the original contract’s code at address 0xCD.
Adapting to EVM. The EVM has some particularities that
must be considered when implementing a bytecode rewriter.
Namely, the EVM enforces some separation of code and data
in the code address space. EVM implementations prevent
jumps into the data constants that are embedded into PUSH
instructions. The constant operands of the push instructions
follow directly after the byte of the push instruction opcode.

Such a constant operand can accidentally include the byte
for the JUMPDEST instruction. Then, the constant would be
a legitimate jump target and a new unintended instruction
sequence would occur. To avoid such unintended instruction
sequences, EVM implementations perform a linear sweep over
the code section to find all push instructions. The constants that
are part of those push instructions are then marked as data and
therefore as invalid jump targets, even if they contain a byte
equivalent to the JUMPDEST instruction. However, due to per-
formance reasons, EVM implementations ignore control-flow
information when marking data. As such, the push instructions
opcode byte itself can be part of some data constant, such as
a string or other binary data. For this reason, smart contract
compilers accumulate all data constants at addresses strictly
larger than any reachable code, avoiding any conflicts between
the generated code and data encoded into the code address
space. However, our trampoline-based rewriter does append
code behind the data constants of the smart contracts. To avoid
that code appended by the rewriter is accidentally marked as
an invalid jump destination due to a preceding push opcode
byte, we carefully insert padding between the data of the
original contract and the newly appended code.
Applicability of Trampoline Approach. The trampoline-
based approach to rewriting requires only minimal code
analysis and works for most use cases. However, this approach
faces two problems. First, instructions can only be patched
in basic blocks that are large enough (in terms of size in
bytes) to also contain the trampoline code. However, a typical
trampoline requires 4 to 5 bytes and typically basic blocks that
perform some meaningful computation are large enough to
contain the trampoline code. Second, due to the copying of ba-
sic blocks the code size increases depending on the basic block
that is patched thereby increasing deployment cost. However,
our experiments show that the overhead during deployment
is negligible (on average US$0.02 per deployment, see § 5).
No reliance on accurate control-flow graph. Recovering an
accurate control-flow graph given only EVM bytecode is a
challenging and open problem. However, our trampoline based
approach does not require an accurate and complete control-
flow graph. Instead, we only need to recover basic block
boundaries given the program counter of the instruction, where
the patch needs to be applied. In doing so, recovering the basic
block boundaries is tractable, since the EVM has an explicit
marker for basic block entries (i.e., the JUMPDEST pseudo-
instruction). Furthermore, our rewriter only needs to recover
the end of the basic block and any following basic blocks that
are connected via fallthrough edges in the control-flow graph.

4.3 Patch Testing

While the insertion of trampolines into the original code does
not change the functionality of the contract, the patch template
itself can perform arbitrary computations and could potentially
violate the semantics of the patched contract. To test the



patched contract, EVMPATCH utilizes a differential testing
approach. That is, we re-execute all transactions of the contract
to determine if the behavior of the original, vulnerable code and
the newly, patched code differ. EVMPATCH utilizes past trans-
actions to the contract retrieved directly from the blockchain.
If the contract comes with unit tests, EVMPATCH also utilizes
the unit tests to test the newly patched contract. This differ-
ential testing approach cannot guarantee formal correctness of
the contract. Contracts with a low number of available transac-
tions are prone to low test coverage. However, our experiments
(see § 5.2.1) show that the differential testing approach works
well enough in practice to show that the patches do not break
functionality. Given the availability of a formal specification of
the contract’s functionality, EVMPATCH could also leverage a
model checker to validate a patched contract more rigorously.

During differential testing, we first retrieve a list of transac-
tions to the vulnerable contract from the blockchain. Second,
we re-execute all those transactions and retrieve the execution
trace for each transaction. Then, we then re-execute the same
transactions, but replace the code of the vulnerable contract
with the patched contract code, to obtain the second execution
trace. We use a modified Ethereum client, based on the popular
go-ethereum client6, since the original client does not support
this functionality. Finally, we compare both execution traces
and the patch tester produces a list of transactions, where the
behavior differs. If there are no such transactions, then we
assume that the patch does not inhibit the functionality of the
contract and proceed with deploying the patched contract.

The execution traces of the original and patched contracts
are never equal since patching changes control flow and
inserts instructions. Hence, we examine only potentially state-
changing instructions, i.e., instructions that either write to the
storage area (i.e., a SSTORE) or transfer execution flow to an-
other contract (e.g., a CALL instruction). We then compare the
order, parameters, and result of all state-changing instructions
and find the first instruction where the two execution traces
differ. Currently, we assume that the introduced patches do not
result in any new state-changing instructions. This assumption
holds for patches that introduce input-validation code and re-
vert when invalid input is passed. However, the trace difference
computation can be adapted to become aware of potential state
changes that a patch introduces.Reported transactions that fail
in the code, which is part of the patch, are marked as potential
attack transactions. If the reported transaction failed due to
out-of-gas in the patched code, we re-run the same transaction
with an increased gas budget. We issue a warning since users
will have to account for additional gas cost introduced by
the patch. Finally, the developer must examine the reported
transactions to decide whether the given list of transactions
are legitimate or malicious. As a side-effect, this makes our
patch tester an attack detection tool for the vulnerable contract
allowing developers to quickly find prior attack transactions.

6We utilized version 1.8.27-stable-3e76a291

4.4 Deployment of Patched Contracts

As described in § 3, EVMPATCH utilizes the delegatecall-
proxy based upgrade pattern to deploy the patched contract.
To achieve this, EVMPATCH splits the smart contract to two
contracts: a proxy contract and a logic contract. The proxy
contract is the primary entry point and stores all data. By
default, EVMPATCH utilizes a proxy contract that is shipped
with EVMPATCH. However, EVMPATCH can also re-use
existing upgradable contracts, such as contracts developed
with the ZeppelinOS framework [46]. Users interact with the
proxy contract, which is located at a fixed address. To facilitate
the upgrade process, the proxy contract also implements
functionality to update the address of the logic contract. To
prevent malicious upgrades, the proxy contract also stores the
address of an owner, who is allowed to issue upgrades. The
upgrade then simply consists of sending one transaction to
the proxy contract, which will (1) check whether the caller
is the owner and (2) update the address of the logic contract.

The proxy contract retrieves the address of the new
logic contract from storage and simply forwards all calls
to that contract. Internally, the proxy contract utilizes the
DELEGATECALL instruction to call into the logic contract. This
allows the logic contract to gain full access to the storage
memory area of the proxy contract thereby allowing access
to the persistent data without any additional overhead.

4.5 Possible Applications

The bytecode rewriter takes a patch template, which is
specified as short snippet of EVM assembly language.
This template is then specialized according to the patched
contract and relocated to the end of the patched contract.
This template-based approach to patch generation allows to
specify multiple generic patches to address whole classes of
vulnerabilities. In the following, we list possible vulnerability
classes that can immediately benefit from our framework.
Improper access control to critical functions can be patched
by just inserting a check at the beginning of a function to
verify that the caller is a certain fixed address or equal to some
address stored in the contract’s state. Detection tools to handle
this vulnerability have been investigated in prior work [20, 28].
Mishandled exceptions can occur when the contract uses a
low-level call instruction, where the return value is not handled
automatically, and the contract does not properly check the
return value [23]. This issue can be patched by inserting a
generic return-value check after such a call instructions.
Integer bugs are highly likely to occur when dealing with
integer arithmetic since Solidity does not utilize checked
arithmetic by default. This has resulted in many potentially
vulnerable contracts being deployed and some being actively
attacked [13, 30]. Given the prevalence of these vulnerabilities,
we discuss in the next section how to automatically patch
integer overflow bugs using EVMPATCH.



1 function initMultiowned(address[] _owners, uint _required)
2 À internal {
3 // ...
4 function initDaylimit(uint _limit) À internal {
5 // ...
6 // throw unless the contract is not yet initialized.
7 modifier only_uninitialized { if (m_numOwners > 0) throw; _;}
8
9 function initWallet(address[] _owners, uint _required,

10 uint _daylimit)
11 Á only_uninitialized {
12 // ...

Figure 3: Source code of patched Parity Multisig Wallet.

In what follows, we demonstrate the effectiveness of
EVMPATCH by applying it to the two major bug classes of
access control errors and integer bugs.

5 Evaluation of EVMPATCH

In this section, we report the evaluation results of EVMPATCH
in patching two prominent types of bugs: (1) access control
bugs, and (2) integer bugs (over-/underflow).

5.1 Patching Access Control Bugs
The Parity MultiSig Wallet is a prominent example for access
control errors [3, 39]. This contract implements a wallet that
is owned by multiple accounts. Any action taken by the wallet
contract must be authorized by at least one of the owners.
However, the contract suffered from a fatal bug that allowed
anyone to become the sole owner because the corresponding
functions initWallet, initMultiowned, and initDayLimit did not
perform any access control checks.

Figure 3 shows the patched source code which adds
the internal modifier to the functions initMultiowned and
initDayLimit (marked with À in Figure 3). This modifier
makes these two functions inaccessible via the outside
interface of the deployed contract. Furthermore, the patch adds
the custom modifier only_uninitialized, which checks whether
the contract was previously initialized (marked with Á).

The developers originally introduced a new vulnerability
while deploying the patched the contract, which was actively
exploited [38]. In contrast, because EVMPATCH performs
bytecode rewriting, it would have immediately generated
a securely patched version of the contract and would have
deployed it automatically in a secure manner.

Consider Figure 4 which shows a customized patch in the
domain-specific language employed by EVMPATCH to spec-
ify patches. As such, we insert a patch at the beginning of
the initWallet function that checks whether the condition
sload(m_numOwners) == 0 holds, i.e., whether the contract
is not yet initialized. If this does not hold, the contract execution
will abort with a REVERT instruction. Note that here an explicit
sload needs to be used to load variables from storage and the

1 add_require_patch:
2 initWallet:
3 - sload(m_numOwner) == 0
4
5 delete_public_function_patch:
6 - initDayLimit
7 - initMultiowned

Figure 4: Customized Patch for Partity Multsig Wallet.

expression is logically inverted from the patch in Figure 3, since
this patch essentially inserts a Solidity require statement. Fur-
thermore, two other publicly accessible functions need to be
removed from the public function dispatcher. The patch shown
in Figure 4 combines two existing patch templates provided by
EVMPATCH. First, the add require patch template enforces
a pre-condition before a function is entered. Second, the delete
public function patch template removes a public function from
the dispatcher, effectively marking the function as internal.
Evaluation Results.We verified that the patched contract is
no longer exploitable by deploying a patched version of the
WalletLibrary contract against the attack. Further, we compare
a source-level patch with the patch applied by EVMPATCH.
Table 2 shows an overview of the results. EVMPATCH only
increases contract size by 25 B. The additional gas cost of
the initWallet function is only 235 gas, i.e., 0.000,06 USD per
transaction for 235.091 USD/ETH and a typical gas price of
1 Gwei. This demonstrates that EVMPATCH can efficiently
and effectively insert patches for access control bugs.

5.2 Patching Integer Bugs

Typical integer types are bound to a minimum and/or maximum
size due to the fixed bit-width of the integer type. However,
programmers often do not pay sufficient attention to the size
limitation of the actual integer type potentially causing integer
bugs. Fortunately, several high-level programming languages
(Python,Scheme) are able to avoid integer bugs since they lever-
age arbitrary precision integers with virtually unlimited size.
However, the de-facto standard programming language for
smart contracts, namely Solidity, does not embed such a mecha-
nism. This leaves the burden of handling integer overflows com-
pletely on the developer who needs to either manually imple-
ment overflow checks or properly utilize the SafeMath library
to safely perform numeric operations [33]. While common, the
former is obviously error-prone. For instance, multiple vulner-
abilities in ERC-20 token contracts were recently unveiled [1,

Table 2: Overhead of access control patch.

Version Bytes Size Increase Gas Increase

Original 8290 0 % 0
Source-Patched 8201 −1.07 % 226
EVMPATCH’ed 8315 0.3 % 235



1 function batchTransfer(address[] _receivers, uint256 _value)
2 public whenNotPaused returns (bool) {
3 uint cnt = _receivers.length;
4 // OVERFLOW: 2 * ((INT_MAX / 2) + 1) == 0
5 uint256 amount = uint256(cnt) * _value;
6 require(cnt > 0 && cnt <= 20);
7 // BYPASSED CHECK: balances[msg.sender] >= 0
8 require(_value > 0 && balances[msg.sender] >= amount);
9 // RESULT: Transfer of ((INT_MAX / 2) + 1) tokens

Figure 5: Integer overflow bug reported by PeckShield [1].

26, 27]. These contracts manage subcurrencies, so-called to-
kens, on the Ethereum blockchain. Such tokens can deal with
large amounts of currency since they track the token balance
of every token owner and mediate the exchange of tokens and
Ether. Figure 5 shows an excerpt of the BEC token contract’s
code that exemplifies such integer overflow vulnerabilities.
When computing the total amount in Line 6, an unchecked inte-
ger multiplication is used allowing an attacker to provide a very
large _value. As a consequence, the amount variable will be set
to a small amount. This effectively bypasses the balance check
in Line 11 allowing the attacker to transfer a large amount of
tokens to an attacker-controlled account. Recently, similar vul-
nerabilities have been discovered in over 42,000 contracts [13].

We developed patch templates for detecting integer over-
flows and underflows for the standard EVM integer width, i.e.,
unsigned 256 bit integers. For integer addition, subtraction,
and multiplication, these templates add checks inspired by
secure coding rules in the C programming language [34]
and the SafeMath [33] Solidity library. When a violation is
detected, EVMPATCH issues an exception to abort and roll
back the current call to the contract.

5.2.1 Evaluation Results

To verify the correctness of the patches generated by our
bytecode rewriter, we utilized the state-of-the-art integer
detection tool Osiris [13] for vulnerability detection. After
analyzing 50,535 unique contracts in the first 5,000,000
blocks of the Ethereum blockchain, Osiris detects at least
one integer overflow vulnerability in 14,107 contracts. Using
EVMPATCH, we were able to successfully patch almost all of
these contracts automatically. More specifically, we could not
patch 33 contracts amongst the 14107 investigated contracts
because the basic block, where the detected vulnerability was
located is too small for the trampoline code.

From those 14107 contracts, around 8000 involve transac-
tions on the Ethereum network. To generate a large and repre-
sentative evaluation data set, we extracted all transactions sent
to these contracts up to block 7,755,100 (May 13 2019) from
the Ethereum blockchain resulting in 26,385,532 transactions.

Replaying those transactions with our patch tester shows
that for 95.5 % of all vulnerable contracts, EVMPATCH’s
generated patch was compliant to all of the prior transactions
associated with those contracts. For the remaining 4.5 % of

the investigated contracts, our patch rejected transactions for
one of the following reasons: (1) we successfully stopped a
malicious transaction, (2) the reported vulnerability was a
false positive and should not have been patched, or (3) we
unintentionally changed the contract’s functionality.

For close scrutiny, we selected ERC-20 token contracts
from those contracts that could be successfully patched by
EVMPATCH with confirmed integer overflow/underflow
vulnerabilities that have been successfully attacked (see
Table 3). For comparison purposes, we also manually patch
these contracts on the Solidity source code level by replacing
the vulnerable arithmetic operations with functions adapted
from the SafeMath library [33]. The manually patched source
code is then compiled with the exact same Solidity compiler
version and optimization options used in the original contract
(as reported on etherscan.io).

We applied the EVMPATCH patch tester to the generated
patched contract versions and validated the reported outcome.
This allows us to verify whether both patching approaches
abort the same attack transactions. In addition, we can
compare the overhead in gas consumption and the increase
in code size. Note that in the manual patching method, we
do not patch all potential vulnerabilities detected by Osiris as
we skip adding checks on those arithmetic operations which
cannot be exploited by an attacker, i.e., vulnerable arithmetic
operations contained in functions that can only be called by the
controller or owner of the contract. We verified the correctness
of our patches using a total number of 506,607 real-world
transactions associated with the ERC-20 token contracts listed
in Table 3.

Table 3 shows the transaction execution results of the patch
tester. We verified the aborted transactions and confirm that
all of them correspond to genuine attacks except for one
transaction7, which resembles a special case of token burning
that we discuss in detail below. Apart from the valid attack
transactions, the execution traces of the re-executed transac-
tions match those of the original transactions, confirming that
our patch does not break the contract’s functionality.

Out of the transactions identified as attacks, we found one
particular transaction to the HXG token [17]. The transaction
does indeed trigger an integer overflow but the HXG token
rather burns some tokens by transferring them to a blackhole
address 0x0. The burned tokens cannot be recovered and
the balance of the blackhole address does not influence the
behavior of the contract. When analyzing the contract, Osiris is
not aware of the semantics of this blackhole address and reports
a possible integer overflow. EVMPATCH then conservatively
patches the integer overflow bugs reported by Osiris, which
leads to one legitimate transaction failing. We argue that this
pattern can be seen as bad coding practice as it wastes gas in
unnecessarily storing the balance of the blackhole address.
Gas Overhead. The additional code introduced by the patch-
ing may potentially cause transactions to fail with an out-of-gas

70x776da02ce8ce3cc882eb7f8104c31414f9fc756405745690bcf8df21e779e8a4
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Contract CVE # Patches
# Transactions Overhead (gas) Code Size Increase (B) Additional Cost RW (US$)
Total Attacks RW SM RW SM per TX per Upgrade

BEC [2] 2018-10299 1 424,229 1 83 164 117 (1.0%) 133 (1.1%) <0.01 0.01
SMT [36] 2018-10376 1 56,555 1 47 108 191 (0.8%) 97 (0.4%) <0.01 0.01
UET [43] 2018-10468 55 24,034 12 225 21 1,299 (18.2%) 541 (7.6%) <0.01 0.071
SCA [37] 2018-10706 1 292 10 47 0 3,811 (17.3%) 361 (1.6%) <0.01 0.189
HXG [17] 2018-11239 9 1497 5 120 541 997 (28.1%) 519 (14.6%) <0.01 0.057

Table 3: ERC-20 Token contracts investigated in depth with their respective CVE number, the number of patches introduced by EVMPATCH,
and the number of transactions replayed by EVMPATCH’s patch tester and the number of attack transactions identified while testing the patches.
We also give the average amount of overhead in gas consumption over all replayed transactions and overhead of contract size of the manual
patched contracts (SM) and rewriter-generated patches (RW) and the overhead of the rewriter converted to US$ (with a gas price of 1 Gwei
and 235 US$/eth; For readability we only show the exact US$ figures only if they are more than one cent).

error. While the patches generally do not significantly increase
gas consumption, such a behavior can nevertheless occur when
the sender of the transactions provides a very tight gas budget.
When the re-execution of a transaction with patched code fails
early due to an out-of-gas exception, we could not accurately
compare the behavior of the patched contract with the original
contract. To remedy this, we disabled the gas-accounting in
the EVM. We report the amount of additional gas consumption
during transaction execution in Table 3. We excluded those
transactions that do not execute functions which contain the
vulnerable code, because they are not affected by the patches
and therefore not relevant to our measurements.

Our results show that for contracts BEC, SMT, and HXG,
those patched with EVMPATCH incur less gas overhead
at runtime (83 gas, 47 gas and 120 gas) when compared to
those patched on the source code level (164 gas, 108 gas and
541 gas). This is due to the fact that the Solidity compiler gen-
erates non-optimal code when only very few checks are added.
In particular, Solidity utilizes internal function calls to invoke
the SafeMath integer overflow checks. While this reduces code
size (in case the check is needed at multiple places), it always
requires executing additional instructions—thereby increasing
gas overhead—to invoke and return from the internal function.
In contrast, EVMPATCH inlines the safe numeric operations
thereby introducing less gas overhead. One would need to
instruct the Solidity compiler to selectively enable function
inlining to yield similar gas costs as EVMPATCH.

Note that the average gas overhead is 0 gas for the manually
patched SCA token. This is because only one transaction
triggers the SafeMath integer overflow check. However, this
is an attack transaction and it is aborted early, making gas
overhead calculation not possible.

For UET and SCA, we identify higher gas overhead than for
the manually patched version. In fact, UET requires on average
255 units of additional gas for every transaction in the patched
version. In contrast, only 21 gas is added for manually patched
version. This is due to the fact that our bytecode rewriter
conservatively patches every potential vulnerability reported
by Osiris in these two contracts (12 and 10 respectively).

However, not all of them are actually exploitable and as such
we did not instrument them during manual patching.
Code Size Increase. Deploying contracts in the Ethereum
blockchain also incurs costs proportionally to the size
of the deployed contract. More specifically, Ethereum
charges 200 gas per byte to store the contract code on the
blockchain [44]. From Table 3, we recognize that the amount
of extra code added by our rewriter is comparable to that of
the SafeMath approach when a single vulnerability is patched.
Since our approach duplicates the original basic blocks, the
code size overhead depends on the specific location of the
vulnerability. In the case of the BEC token contract, our
rewriter increases the code size less than the source-level
patches. The Solidity compiler generates more code for
including the SafeMath library than is strictly necessary for the
patch. Even considering the overhead of bytecode rewriting,
we observe that EVMPATCH generates a smaller patch than
the manual patching method for this contract.

However, in case many vulnerabilities are patched,
EVMPATCH adds a slightly higher overhead. Naturally, the
size of the upgraded contracts increases with the number of
vulnerabilities to fix due to inlining. For instance, our bytecode
rewriter generates 12 patches for UET contract and 10 patches
for SCA contract resulting in 1299 B (18.2%) and 3811 B
(17.3%) increase in code size. In the worst-case scenario in our
dataset, this increase in code size induces negligible additional
cost of US$0.18 per deployment.

Our patch templates are currently optimized for patching
a single vulnerable arithmetic. It is straightforward to adopt
an approach akin to Solidity’s internal function calls when
developing patch templates for our bytecode rewriter, which
would reduce the code size overhead when patching many
integer overflows.

EVMPATCH applies 3.9 patches on average to a contract in
our data set of 14,107 contracts. The average code size of the
original contracts is 8142.7 B (σ 5327.8 B). The average size
increase after applying patches with EVMPATCH is 455.9 B
(σ 333.5 B). This amounts to an average code size overhead of
5.6% after applying the patches. Given that Ethereum charges



200 gas per byte to the contract creation transaction, it incurs
an average overhead of 91,180 gas or US$0.02 at the time of
writing. In the worst case that we observed, EVMPATCH incurs
an overhead of 199,800 gas at deployment, which at the time of
writing only amounts to about US$0.04 additional deployment
cost. This shows that the overhead of applying patches with
bytecode rewriting is negligible for contract deployment, espe-
cially when compared to the number of Ether possibly at stake.
Costs of Deployment. The deployment cost of a newly
patched contract dominates the costs of operating a smart
contract with EVMPATCH. However, additionally there is a
transaction needed to switch the address of the logic contract.
Since the proxy pattern requires no state migration, this trans-
action requires a constant amount of gas. The proxy contract
we utilize in EVMPATCH consumes 43.167 gas during a
switchover transaction, i.e., about US$0.01. Currently, state mi-
gration is the most viable contract upgrade strategy besides the
proxy pattern. Prior work estimated that even with only 5000
ERC-20 holders, i.e., smart contract users, state migration will
likely cost more than US$100.00 in the best case [41]. Hence,
compared to the cost of migrating all data to a new contract,
the EVMPATCH’s additional cost of US$0.01 is negligible.
Detecting Attacks. The patch tester of EVMPATCH allows
us to also identify any prior attack transactions. In Figure 6, we
additionally observe that while the vulnerabilities of the other
token contracts have been reported within a fairly reasonable
time after the first attack, UET has been exploited (5 months)
long before the bug disclosure. More surprisingly, all contracts
are still fairly active though they encountered a decrease of
transaction volume after public disclosure of the vulnerabil-
ities. Despite the fact that all of these vulnerabilities have
been discovered around one year before the time of writing,
there are still 23,630 transactions (4.66 % of the evaluated
transactions) issued to these vulnerable contracts after the
public disclosure of the vulnerabilities, including successful
attacks. This means that the owners of those contracts did
not properly migrate to patched versions and users were not
properly notified of the vulnerable state of these contracts.

5.2.2 Analysis of False Positives/Negatives

During our analysis of the vulnerable contracts, we identified
false positives and false negatives caused by vulnerability
reporting of Osiris [13]. This demonstrates that our patch
testing is an important step in the process as many analysis
tools are imprecise. We found that in the default configuration,
Osiris often achieves limited code coverage. To this end, we
utilized different timeout settings for both the whole analysis
and for queries to the SMT solver and combined the results
of multiple runs to achieve better code coverage. Furthermore,
we found that—contrary to the claims in the original Osiris
paper [13]—not all vulnerabilities are accurately detected by
Osiris in two particular cases.
Hexagon (HXG) Token. This contract is vulnerable to an

 1

 10

 100

 1000

 10000

 100000

0
7
/1

7

0
9
/1

7

1
1
/1

7

0
1
/1

8

0
3
/1

8

0
5
/1

8

0
7
/1

8

0
9
/1

8

1
1
/1

8

0
1
/1

9

0
3
/1

9

0
5
/1

9

#
T

ra
n
s
a
c
ti
o
n
s

Date

BEC

SMT

UET

SCA

HXG

BEC attack

SMT attack

UET attack

SCA attack

HXG attack

Figure 6: Activity timeline of each contract. The grey shadow
indicates the time window in which the vulnerabilities of these
contracts are disclosed by Peckshield [30], and the big hollow points
signify the occurrences of the attacks.

integer overflow, which allows an attacker to transfer very
large amounts of ERC-20 tokens [26]. Osiris reports two false
positives, which are caused by EVM code that is generated by
the Solidity compiler. Even though all types are unsigned types
in the Solidity source code, the compiler generates a signed
addition. Here, Osiris reports a possible integer overflow,
when −2 is added to the balanceOf mapping variable. When
performing signed integer additions with negative values, the
addition naturally overflows when the result moves from the
negative value range into the positive value range and vice
versa. As such, EVMPATCH patches a checked addition for
an unsigned arithmetic operation which will always overflow.
With our patch tester we observe all the failing transactions and
perform manual analysis of the patched contract’s bytecode
to determine that the root cause is an issue in the Solidity
compiler, i.e., the generated code requires an additional
instruction, when compared to a simple unsigned subtraction.
Social Chain (SCA). Our results also show a problem with
Osiris when analyzing the SCA token. While Osiris does
detect a possible overflow during multiplication in the
problematic Solidity source code line, it does not detect the
possible integer overflow for an addition in the same source
code line. However, in the actual attack transaction, the integer
overflow happens during the not-flagged addition operation.
As such, this constitutes a false negative problem of Osiris.
Since the vulnerable addition is not reported by Osiris, it is
also not automatically patched by EVMPATCH. In contrast,
for the manually patched version we took both arithmetic
operations into account. The related attack transaction was
previously reported as an attack transaction [27].
Summary of Evaluation. To summarize, our evaluation on
integer overflow detection shows that EVMPATCH can cor-
rectly apply patches to smart contracts preventing any integer
overflow attack. Furthermore, EVMPATCH incurs only a
negligible gas overhead during deployment and runtime; espe-
cially compared to the Ether at stake. Our analysis shows that



the analyzed vulnerable smart contracts are still in active use,
even after being attacked and the vulnerabilities being publicly
disclosed. This motivates the need for a timely patching frame-
work such as EVMPATCH. Lastly, based on an extensive and
detailed analysis of 26,385,532 transactions, we demonstrate
that EVMPATCH always preserves the contract’s original
functionality except for a few cases, where the vulnerability re-
port (generated by the third-party tool Osiris) was not accurate
or bad coding practices were used (blackhole address).

5.3 Developer Study
Developer Background. To quantify the manual effort needed
to patch smart contracts and evaluate the usefulness of EVM-
PATCH we conducted a thorough study with 6 professional
developers with varying prior experience in using blockchain
technologies and developing smart contracts. Our developers
consider themselves familiar with blockchain technologies
but not very familiar with developing Solidity code. None of
the developers have developed an upgradable contract before.
As such, we can quantify the effort needed for a smart contract
developer to learn and apply an upgradable contract pattern.
Methodology. Throughout our study, we asked the developers
to perform multiple tasks manually that are performed
automatically by EVMPATCH: (1) manually patch three
contracts vulnerable due to integer overflow bugs given the
output of a static analyzer (OSIRIS [13]), (2) convert a contract
to an upgradable contract manually and with EVMPATCH, and
(3) patch an access control bug using EVMPATCH by writing a
custom patch-template. The three tasks cover different scenar-
ios, where EVMPATCH can be useful to a developer. The first
two tasks cover the use of EVMPATCH to patch known bug
classes with minimal human intervention. For these two tasks
we assume no prior knowledge on patching smart contracts
(see Table 5 how developers rated their prior experience
with smart contracts). In contrast, the third task consists of
extending EVMPATCH. This requires understanding a bug
class and perform root cause analysis to properly patch the
vulnerability. This is surely more challenging compared to
the previous two tasks. Since the third task covers a different

Table 4: Timing results for the tasks as reported by the developers
given in minutes and their reported confidence in the correctness of
their results.

Task Time (Minutes) Confidence
Median Min Max Median (1-7)

Manual
Integer Patches

47.50 35 78 6

Conversion 62.50 33 110 2.5

EVMPATCH

Conversion
1.50 1 3 -

Patch Template 4.00 2 15 7

bug class, we believe there is no significant bias in the data
due to the developers completing the other two tasks first.

For all tasks, we measured the time required by the
developer to perform the task (excluding the time required for
reading the tasks’ description). We asked the developers to rate
their familiarity with relevant technologies, their confidence
levels in their patches, and the difficulty of performing the
tasks on a 7-point Likert scale. The full questionnaire and
the answers of the developers are shown in Table 5, and the
recorded time measurements are shown in Table 4. We provide
the supporting files in a github repository.8

We then performed both a manual code review and a cross-
check with EVMPATCH to analyze mistakes made by the
developers. The results of our study show that significant effort
is needed to correctly patch smart contracts manually, whereas
EVMPATCH enables simple, user-friendly, and efficient
patching. The time measurements show that the developers,
who had no prior experience with EVMPATCH, were able to
perform complex tasks utilizing EVMPATCH within minutes.
Patching Integer Overflow Bugs. We asked the developers
to fix all integer overflow vulnerabilities in three contracts:
1 BEC [2] (CVE-2018-10299, 299 lines of code), and
2 HXG [17] (CVE-2018-11239, 102 lines of code) and
3 SCA [37] (CVE-2018-10706, 404 lines of code). To provide
a representative set of contracts, we chose three ERC-20 con-
tracts with varying complexity (in terms of lines of code) and
where the static analysis also includes missed bugs and false
alarms (see § 5.2.2). We ran OSIRIS on all three contracts and
provided the developers the analysis output as well as a copy of
the SafeMath Solidity library. This accurately resembles a real-
world scenario, where a blockchain developer quickly needs
to patch a smart contract based on the analysis results of recent
state-of-the-art vulnerability analysis tools and can look-up
manual patching tutorials available online. All developers
manually and correctly patched the source code of all three
contracts which demonstrates their expertise in blockchain
development. However, on the downside, it took the devel-
opers on average 51.8 min (σ = 16.6min) to create patched
version for the three contracts. In contrast, EVMPATCH fully
automates the patching process and is able to generate patches
for the three contracts within a maximum of 10 s.
Converting to an Upgradable Contract. The developers
had to convert a given smart contract into an upgradable smart
contract. We provided the developers a short description of the
delegatecall-proxy pattern and asked them to convert the given
contract into two contracts: one proxy contract and a logic
contract, which is based on the original contract. We provided
no further information on how to handle the storage-layout
problem, and we explicitly allowed using code found online.
The developers required an average of 66.3 min9 to convert
a contract into an upgradable contract. None of the developers
performed a correct conversion into an upgradable contract,

8github.com/uni-due-syssec/evmpatch-developer-study
9σ=31.3min, fastest 33 min and slowest 110 min

https://github.com/uni-due-syssec/evmpatch-developer-study


which is also reflected in a median confidence of 2.5 in the
correctness reported by the developers. We observed two
major mistakes: (a) The proxy contract would only support a
fixed set of functions, i.e., the proxy would not support adding
functions to the contract, and (b) more importantly, only one
out of six developers correctly handled storage collisions in
the proxy and logic contract, i.e., five of the six converted
contracts were broken by design. Hence, it remains open how
long it would take developers to perform a correct conversion.

Next, we asked the developers to utilize EVMPATCH to
create and deploy an upgradable contract. As EVMPATCH
does not require any prior knowledge about upgradable con-
tracts, the developers were able to deploy a correct upgradable
contract within at most 3 min. In addition, patching with
EVMPATCH inspires high confidence—a median of 7, the best
rating on our scale—in the correctness of the patch. This gives
a strong confirmation that deployment of a proxy with EVM-
PATCH is indeed superior to manual patching and upgrading.

Extending EVMPATCH. The developers had to write a
custom patch template for EVMPATCH. We instructed
the developers on how to use EVMPATCH and how patch
templates are written with EVMPATCH’s patch template
language (see Figure 4 for an example). Furthermore, we
presented the developers an extended bug report that shows
how an access control bug can be exploited. The developers
leveraged the full EVMPATCH system, i.e., EVMPATCH
applies the patch and validates the patch using the patch
tester component which replays past transactions from the
blockchain and notifies the developer whether: (a) the patch
prevents a known attack, and (b) whether the patch broke
functionality in other prior legitimate transactions. As such,
EVMPATCH allowed the developers to create a fully func-
tional and securely patched upgradable contract within a few
minutes. On average, the developers only needed 5.5 min, and
a maximum of 15 min, to create a custom patch template. As
expected, all developers correctly patched the given contract
using EVMPATCH, because a faulty patch would have been
reported by EVMPATCH’s patch tester to the developer.
EVMPATCH’s integrated patch tester gives the developers a
high confidence into their patch. On average, the developers
reported a confidence level of 6.6 (σ=0.4), where 7 is the most
confident. Furthermore, none of the developers considered
writing such a custom patch template as particularly difficult.

Summary. Our study provides confirmation that EVMPATCH
offers a high degree of automation, efficiency, and usability
thereby freeing developers from manual and error-prone tasks.
In particular, none of the six developers were able to produce
a correct upgradable contract mainly due to the difficulty of
preserving the storage-layout. Our study also confirms that
extending EVMPATCH with custom patch templates is a
feasible task, even for developers that are unaware of the inner
workings of EVMPATCH.

6 Related Work

The infamous attack against “TheDAO” contract [7] received
considerable attention from the community. Since then, many
additional exploits and defenses, which mostly focus on discov-
ering bugs before the contract is deployed, were revealed. Luu
et al. presented the symbolic executor Oyente that explores a
contracts code, while looking for possible vulnerabilities [23].
Since then many other symbolic execution tools with better
precision, performance, and covering different vulnerabilities
have been proposed [13, 20, 24, 25, 28]. Furthermore, static
analyzers for both Solidity [12] and EVM bytecode have been
proposed [42]. Information flow analysis and data sanitization
in a multi-transaction setting is analyzed by Ethainter [4].
Furthermore, methods from formal verification and model
checking have been applied to smart contracts [14, 19] and the
semantics of the EVM and Solidity language have been for-
malized [15, 18]. However, only a small body of prior work has
researched dynamic analysis and runtime protections. Tools
such as Sereum [32] or ECFChecker [16] can detect live reen-
trancy attacks on vulnerable contracts. Recent work has further
explored modular dynamic analysis frameworks for protecting
smart contracts [6, 40]. Protection solutions that require
modifications to the smart contract execution environment are
unlikely to be integrated in to production blockchain systems.

Integer overflows have been widely studied in the context
of Ethereum smart contracts. Osiris [13] is an extension to
the symbolic execution tool Oyente [23] to accurately detect
integer bugs. The improved symbolic execution engine first
attempts to infer the integer type, i.e., signedness and bit width,
from the specific instructions generated by Solidity compilers.
Next, it checks for possible integer bugs, such as truncation,
overflow, underflow, and wrong type casts. We leverage the
detection capabilities of Osiris, because it pinpoints the exact
location of the integer overflow bug. Other tools such as
TeEther [20] and MAIAN [28] implicitly find integer bugs
when they generate exploits for smart contracts. However,
they do not report the exact location of the integer overflow,
because they focus on exploit generation. ZEUS [19] utilizes
abstract interpretation and symbolic model checking to verify
safety properties of smart contracts. While ZEUS can detect
potential integer overflow vulnerabilities, it does so at the
LLVM intermediate level and cannot determine the exact
location in the corresponding EVM bytecode.

Recently, bytecode rewriting for patching smart con-
tracts has been explored with SMARTSHIELD [47].
SMARTSHIELD requires a complete control-flow graph
(CFG) to update jump targets and data references. As discussed
in § 4.1, generating a highly accurate CFG is highly challeng-
ing due to the EVM’s bytecode format. We believe that such
a bytecode rewriting strategy does not scale to larger and more
complicated contracts. In contrast, EVMPATCH’s trampoline-
based rewriting strategy does not require an accurate CFG
and is much more resilient when rewriting complex contracts.



SMARTSHIELD implements custom bytecode analysis to
detect vulnerabilities, which may not be as accurate as special-
ized analyses. For example, SMARTSHIELD’s analysis does
not infer whether an integer type is signed, which is important
for accurate integer overflow detection [13]. EVMPATCH is a
flexible framework that can integrate many static analysis tools
for detecting vulnerabilities and can leverage analysis tool
improvements with minimal effort. Last and most importantly,
EVMPATCH automates the whole lifecycle of deploying and
managing an upgradable contract, while SMARTSHIELD
is designed to harden a contract pre-deployment. With
EVMPATCH, a smart contract developer can also patch vulner-
abilities that are discovered after deployment of the contract.

The Ethereum community explored several design patterns
to allow upgradable smart contracts [11, 41, 45, 46] with man-
ual migration to a new contract and the proxy pattern being the
most popular (see § 2). The ZeppelinOS [46] framework sup-
ports upgradable contracts by implementing the delegatecall-
proxy pattern. However, developers have to manually ensure
compatibility of the legacy and patched contract on the Solidity
level. This can be achieved using static analysis tools that
perform “upgradeability” checks (e.g., Slither [35] checks for
a compatible storage layout), which relies on accurate knowl-
edge of compiler behavior with respect to storage allocations.
On the other hand, EVMPATCH combines existing analysis
tools and provides an automatic method to patch detected vul-
nerabilities while keeping storage layout consistent by design.

7 Conclusion

Updating erroneous smart contracts constitutes one of the
major challenges in the field of blockchain technologies. The
recent past has shown that attackers are fast in successfully
abusing smart contract errors due to the natural design of the un-
derlying technology: always online and available, one common
and simple computing engine without any subtle software and
configuration dependencies, and (often) high amount of cryp-
tocurrency at disposal. While many proposals have introduced
frameworks to aid developers in finding bugs, it remains open
how developers and the community can quickly and automat-
ically react to vulnerabilities on already deployed contracts. In
this work, we developed a framework that supports automated
and instant patching of smart contract errors based on bytecode
rewriting. In terms of evaluation, we were able to demonstrate
that real-world vulnerable contracts can be successfully
patched without violating the functional correctness of the
smart contract. Our developer study shows that an automated
patching approach greatly reduces the time required for patch-
ing smart contracts and that our implementation, EVMPATCH,
can be practically integrated into a smart contract developers
workflow. We believe that automated patching will increase
the trustworthiness and acceptance of smart contracts as it
allows developers to quickly react on reported vulnerabilities.
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Table 5: Developer study questionnaire and answers by six developers (identified by the letters A to F).

Question Answers Scale

A B C D E F Median

Q1 Did you write Solidity code in the last two weeks? no no no no yes no (yes/no)
Q2 Have you previously worked

on a production-grade Solidity-based Ethereum contract?
yes no no no no no (yes/no)

Q3 Have you previously worked on a production-grade
smart contract on another Blockchain Platform?

no no yes no yes yes (yes/no)

Q4 How familiar are you with Blockchain technologies in general? 6 5 7 6 6 6 6 (1 not familiar,
7 very familiar)

Q5 How
familiar are you with the Ethereum Blockchain in particular?

6 5 4 2 6 2 4.5 (1 not familiar,
7 very familiar)

Q6 How familiar are you with the Solidity programming language? 6 3 2 1 5 1 2.5 (1 not familiar,
7 very familiar)

Q7 How familiar are you with upgradable contracts in Solidity? 5 3 1 1 4 1 2 (1 not familiar,
7 very familiar)

Task 1

T1Q1 How
confident are you in the correctness of your patch to contract 1?

5 7 7 6 7 6 6.5 (1 least confident,
7 most confident)

T1Q2 How
confident are you in the correctness of your patch to contract 2?

6 7 7 4 7 6 6.5 (1 least confident,
7 most confident)

T1Q3 How
confident are you in the correctness of your patch to contract 3?

3 5 6 5 2 4 4.5 (1 least confident,
7 most confident)

T1Q4 How much time did you need to patch all three contracts? 78 35 40 40 55 63 47.5 (Time in Minutes)

Task 2

T2Q1 Have you previously
used the delegatecall-proxy pattern in a Solidity contract?

no no no no no no (yes/no)

T2Q2 Have you previously
used a different pattern to make a Solidity contract upgradable?

no no no no no no (yes/no)

T2Q3 Have you previously used a different upgradable smart contract? no no no no no no (yes/no)
T2Q4 How confident are you in the correctness of your conversion? 5 3 1 1 5 2 2.5 (1 least confident,

7 most confident)
T2Q5 How difficult was the manual conversion? 4 5 5 6 4 6 5 (1

easy, 7 most difficult)
T2Q6 How difficult was the conversion using the evmpatch tool? 1 1 1 1 1 1 1 (1

easy, 7 most difficult)
T2Q8 How much time did you

need to convert the contract to an upgradable contract (Step 1)?
110 80 45 90 40 33 62.5 (Time in Minutes)

T2Q8 How much time
did you need to convert the contract using EVMPatch (Step 2)?

3 1 1 2 3 1 1.5 (Time in Minutes)

Task 3

T3Q1 How confident are you in the correctness of your patch? 6 7 7 7 7 6 7 (1 least confident,
7 most confident)

T3Q2 How difficult was the conversion using the EVMPatch tool? 2 1 1 1 1 1 1 (1
easy, 7 most difficult)

T3Q3 How much time
did you need to create and deploy the patch using EVMPatch?

15 2 5 2 6 3 4 (Time in Minutes)
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