CAnNn’t Touch This

Software-only Mitigation against Rowhammer Attacks
targeting Kernel Memory

Ferdinand Brasser
David Gens
Christopher Liebchen
Ahmad-Reza Sadeghi Lucas Davi

Intel Collaborative Research Institute for Secure Computing

,) . University of Duisburg-Essen
Technische Universitat Darmstadt y of g

Big Picture: Rowhammer Attacks

Big Picture: Rowhammer Attacks

@ Software

Big Picture: Rowhammer Attacks

Software

Big Picture: Rowhammer Attacks

Software

Big Picture: Rowhammer Attacks

Software

Big Picture: Rowhammer Attacks

Software

Big Picture: Rowhammer Attacks

Software

Big Picture: Our Approach

Software

Big Picture: Our Approach

Software

Big Picture: Our Approach

Software

’i CAn‘t Touch This

Dynamic Random Access Memory (DRAM)

Chip (contains Banks)

“) Dual Inline Memory Module

DRAM: Storing a Single Bit

Read Bit

DRAM: Storing a Single Bit

Read Bit

DRAM: Storing a Single Bit

Read Bit

DRAM: Storing a Single Bit

Read Bit

DRAM: Organization inside a Bank

ﬁﬁﬁﬁﬂﬂ

O O O O O
- C - - - C
3 3 3 33 3 (—1—)
>)) >))
R T A L
~|l==Memory
Row 1: T cel
N /
Row 2:
Row 3:
Row 4:

Row Buffer:

o

o

O O O O
O

DRAM: Read Access

umn 6:

umn 5;:

umn 4:
umn 3:
Column 2:

Column 1:

.
r.QIu
G

)
an)

=

O
o

umn 6:

o

umn 5;:

o

umn 4:

O O O O
O

umn 3:

o

Column 2:

Column 1:

DRAM: Read Access

High voltage
on access

Row Buffer:

umn 6:

o

umn 5;:

o

umn 4:

O O O O
O

umn 3:

o

Column 2:

Column 1:

DRAM: Read Access

High voltage
on access

Row Buffer:

umn 6:

o

umn 5;:

o

umn 4:

O O O O
O

o

umn 3:
Column 2:

Column 1:

DRAM: Read Access

High voltage
on access

Row Buffer:

umn 6:

o

umn 5;:

o

umn 4:

O O O O
O

umn 3:

o

Column 2:

Column 1:

DRAM: Read Access

High voltage
on access

Row Buffer:

umn 6:

o

umn 5;:

o

umn 4:

O O O O
O

o

umn 3:
Column 2:

Column 1:

DRAM: Read Access

High voltage
on access

Row 1
Row 2
Row 3
Row 4
Row Buffer:

(320g-331im)
Ysaifay

How Reliable is DRAM hardware?

* Testing methodology introduced by Kim et al. [ISCA 2014]

Read from Memory at
position X and store in EAX

<test-rows>:

mov e€ax, (X) Read from Memory at
mov ebx, (Y) position Y and store in EBX

clflush (X)

clflush (Y) Evict Xand Y from the
jmp test-rows cache

Repeat procedure
(lots of times)

 XandY need to be on the same bank but in different rows; general pattern: Y = X + 8MB

Single-Sided Rowhammer

Row 1:
Victim Row 2: +++++
Aggressor X Row 3: 1+0+1+0+1+0
Victim Row 4: 0+0+0+0+0+0
Repeatedly
Row 5: +++++ activating
Victim Row 6: ++0+0+0+0 w3 end?
naOo

Aggressor Y Row 7

Row Buffer: ++1*0*1

Single-Sided Rowhammer

Row 1:
Victim Row 2: +++++
Aggressor X Row 3: 1+0+1+0+1+0
Victim Row 4: 9+1+9+9+9+9
Repeatedly
Row 5: +++++ activating
Victim Row 6: ++0+0+1+0 row3end?
enaOn

Aggressor Y Row 7

Row Buffer: ++1*0*1

14000

12000

10000

8000

6000

4000

2000

Many Bit Flips Observed

Bit Flip0->1 Bit Flip1->0

M Sandy Bridge ™ Ivy Bridge m Haswell

Source: Kim et al., ISCA 2014

Once it’s bad, it gets worse.

Double-Sided Rowhammer

Repeatedly
activating
Row 2 and 4

Row 1:

Aggressor X Row 2:

Victim Row 3:

Aggressor Y Row 4:
Row 5:
Row 6:
Row 7:

Row Buffer:

Double-Sided Rowhammer

Repeatedly
activating
Row 2 and 4

Row 1:

Aggressor X Row 2:

Victim Row 3:

Aggressor Y Row 4:
Row 5:
Row 6:
Row 7:

Row Buffer:

How Dangerous are Bit Flips?

2009

Rowhammer Timeline and Attacks

SELECTED

2012

2014

2015

2016

Related Work: First Defenses

Heuristic approach
® (overhead & false positives)

Ineffective [Qiao and
® Seaborn, HOST 2016]

Ineffective [Aweke et
® al. ASPLOS 2016]

Modifies Hardware (costly &
® |egacy problem)

Reviewing Attacker Assumptions

1. Vulnerable Cells

2. Co-location

Our Initial Approach:

Blacklisting

Deactivate Vulnerable Physical Memory

Initial Tests with Blacklisting

Offline Analysis Physical Memory Kernel

Locate Vulnerable
Memory

Blacklist of
vulnerable memory

For more details check our technical report at
https://arxiv.org/abs/1611.08396

Problems of Blacklisting
* Coverage
* Progression of vulnerable cells over time

* Mlemory overhead for other systems than
our test systems unclear

https://arxiv.org/abs/1611.08396

Our Generic Approach:

CATT

Spatially Isolate Physical Memory
in Software

CATT: Contributions and Challenges

* First defense that enables spatial memory isolation
* Defines and manages different security domains

* Prototype Implementation

e CATT for the Linux kernel
e Tested using Real-World Setup
e Extensive Performance and Security Evaluation

Physical Memory

CATT: Design ldea

e Separate security domains physically

Kernel

Security Domain A
Memory Handler
(user-mode)

Security Domain B
Memory Handler
(kernel-mode)

Physical Memory

CATT: Design ldea

e Separate security domains physically

Kernel

Security Domain A
Memory Handler
(user-mode)

Security Domain B
Memory Handler
(kernel-mode)

Physical Memory

CATT: Design ldea

e Separate security domains physically

Kernel

Security Domain A
Memory Handler
(user-mode)

Security Domain B
Memory Handler
(kernel-mode)

Physical Memory

CATT: Design ldea

e Separate security domains physically

Kernel

Security Domain A
Memory Handler
(user-mode)

Security Domain B
Memory Handler
(kernel-mode)

Physical Memory

CATT: Design ldea

e Separate security domains physically
e Attacker can still flip bits

Kernel

Security Domain A
Memory Handler
(user-mode)

Security Domain B
Memory Handler
(kernel-mode)

CATT: Design ldea

e Separate security domains physically
e Attacker can still flip bits
* But only within her security domain

Physical Memory Kernel

Security Domain A
Memory Handler
(user-mode)

Security Domain B
Memory Handler
(kernel-mode)

CATT: DRAM-aware Memory Allocation

 Rowhammer exploits physical co-location

Physical Address Space Physical Memory (DRAM)

CATT: DRAM-aware Memory Allocation

 Rowhammer exploits physical co-location

Physical Address Space Physical Memory (DRAM)

Physical to
DRAM
Mapping

(Hash of
the
physical
address)

CATT: DRAM-aware Memory Allocation

 Rowhammer exploits physical co-location

Physical Address Space Physical Memory (DRAM)

Physical to
DRAM
Mapping

(Hash of
the
physical
address)

* If we know the mapping, we know where a Page Frame will be located in DRAM!

CATT: Implementation

* Prototype for the Linux kernel

* Version 4.6

* Completely transparent to applications

* Modifies physical page allocator

* Associates page frames with security domain

e Adds ,kernel” zone to buddy allocator

Evaluation

System Setup

i7 —lvy Bridge i5 —Sandy Bridge i5 —Sandy Bridge (Mobile)
3GB DDR3 8GB DDR3 3GB DDR3

Security

e Tested blacklisting against previously compiled list of target rows

* Vulnerable rows are successfully blocked by the bootloader

e Tested CATT against existing Rowhammer kernel exploits [BH15
Seaborn and Dullien]

* Without our patch: success within minutes

e With our patch: ran 48+ hours without success

Performance

e SPEC CPU 2006: avg. -0.5% (max 0.29%)
e Phoronix: avg. 0.27% (max. 2.49%)
* LMBench: avg. 0.11% (max. 1.66%)

* Linux Test Project: same results as vanilla kernel
(contains stress tests for scheduling, memory, and file
accesses)

Conclusion

» Software vulnerabilities are still the predominant attack vector
e Continuous arms race between attacks and defenses

* Hardware reliability issues lead to severe security consequences
* Rowhammer corrupts memory without requiring software vulnerabilities

* Good news: Promising research results and insights

* First software-only defenses against Rowhammer have been proposed to
protect legacy systems

-
Vg
-
O

4+
Vg
Q
>

d

