
Tutorial: Analyzing, Exploiting,
and Patching Smart Contracts in Ethereum

Jens-Rene Giesen∗ Sebastien Andreina† Michael Rodler∗ Ghassan O. Karame†‡ Lucas Davi∗

∗University of Duisburg-Essen †NEC Laboratories Europe ‡Ruhr-Universität Bochum

Abstract—Smart contracts are programs which encode business
logic and execute on the blockchain. While Ethereum is the most
popular blockchain platform for smart contracts, an increasing
number of new blockchain platforms are also able to support
smart contract execution (e.g., Solana or Cardano). Security
vulnerabilities in Ethereum smart contracts have demonstrated
that writing secure smart contracts is highly challenging. This
is exacerbated by the fact that the exploitation of buggy smart
contracts seems disproportionately easier compared to exploiting
classic PC software.

In this tutorial, we overview a number of smart contract
vulnerabilities focusing on the Ethereum ecosystem. We
also provide an introduction to the de-facto smart contract
programming language Solidity and provide a comprehensive
hands-on lab tutorial that involves analyzing vulnerable smart
contracts, developing proof-of-concept exploits as well as
introducing security analysis tools for testing smart contracts.

I. INTRODUCTION

Most modern blockchain technologies support smart
contracts–that is, the execution of decentralized programs which
encode business logic within the blockchain. This has been
fueled by the increasing popularity of Ethereum smart contracts,
that often handle cryptocurrency worth millions of US-Dollars.
Unfortunately, the supporting tooling around smart contract de-
velopment neglects important safety and security features preva-
lent in modern day development cycles, which are either not
integrated within smart contracts or not sufficiently usable [1].
This is evidenced in Ethereum smart contracts being plagued by
several types of bugs that can lead to security vulnerabilities [2].

Some of these vulnerabilities resulted in high-profile attacks
against the Ethereum blockchain, such as the notorious
TheDAO attack, the Parity Multisig Wallet attack, and the more
recent Lendf.me and Uniswap attacks. Although these attacks
and their root causes have fueled research to strengthen the
security of smart contracts for several years, one root cause,
namely reentrancy, continues to regularly cause millions of
US-Dollars in losses today [3], [4], [5].

Our goal in this tutorial is to introduce the participants to the
Ethereum platform including the Solidity smart contract pro-
gramming language, and explore common smart contract vulner-
abilities, exploits, and possible defensive measures. Based on a
hands-on lab, participants will experience smart contract vulner-
abilities from the perspective of both developers and attackers.

Partially funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy EXC 2092 CASA
– 390781972 and SFB 1119 – 236615297 project T1.

II. BACKGROUND

A. Ethereum

Ethereum is a blockchain platform that combines its
native cryptocurrency Ether with a decentralized virtual
machine called Ethereum Virtual Machine (EVM). The EVM
executes smart contracts, which effectively consist of programs
operating on the Ethereum blockchain. Ethereum smart
contracts are commonly written in the Solidity programming
language, and compiled to the EVM bytecode format. After
its deployment, the bytecode of a smart contract is stored in
the same address space as account data of externally owned
accounts (EOAs)–that is, accounts operated by a human and
not by smart contract code. Thus, addresses of smart contracts
and common users are relatively indistinguishable in Ethereum.

Every interaction with the Ethereum platform, such as
calling smart contract functions, requires users to create and
send transactions, which are stored on the blockchain ledger
once executed. When calling smart contracts, the user has
to account for the costs of their execution through the gas
mechanism. Gas costs vary starkly between different EVM
instructions. Moreover, a smart contract, once called, may
invoke other smart contracts at will.

B. Reentrancy Vulnerabilities and Arithemetic Integer Bugs

Reentrancy vulnerabilities allow attackers to leverage state
inconsistencies by reentering the contract in unexpected or
unintended ways. A basic form of malicious reentrancy is
possible when an attacker can trick a victim contract into
calling another (usually attacker controlled) contract after
transferring value, but before updating its state.

Due to cross-contract interactions, reentrancy cannot always
be entirely avoided, and can be exploited if not carefully
implemented. Several attacks against Ethereum smart contracts
have demonstrated how vulnerable implementations can lead
to a tremendous loss of value [3], [4], [5], [6].

Arithmetic integer bugs occur when the result of an arithmetic
operation grows either greater (integer overflow) or lower (inte-
ger underflow) than the size of the target type allows. Although
arithmetic integer bugs exist long before the Ethereum platform,
such bugs were actively exploited in popular smart contracts [7].

C. Tools

During the hands-on session of this tutorial, participants will
be introduced to several tools. When writing smart contract

code, participants will learn how to use the beginner-friendly
smart contract IDE Remix. To analyze smart contracts for
security vulnerabilities, participants will further use Slither and
Osiris to find bugs in their target smart contract. Finally, to assist
in finding transaction sequences for exploitation, participants
can use Mythril. Note that this list is in no way exclusive, i.e.,
participants are free to use any other tool they prefer.

III. TUTORIAL FORMAT

We design this tutorial for a total length of 3 hours, consisting
of two main parts, namely 1) an interactive presentation part
(approx. 1 hour) providing background on Ethereum smart
contracts and smart contract vulnerabilities, and 2) a hands-on
session for participants (approx. 2 hours) to solve exercises
in analyzing, exploiting, and fixing smart contracts.

During the presentation part, we introduce basic blockchain
technologies and smart contracts in Ethereum, including an
overview of common vulnerabilities in the Ethereum ecosystem
as well as a brief introduction to Solidity, the de-facto smart
contract programming language for Ethereum smart contracts.
After this introduction, we move to an interactive hands-on
lab during which we guide the participants in analyzing and
exploiting a basic smart contract in our virtual environment.

The hands-on session consists of several exercises. Each
exercise provides participants with the opportunity to analyze
the smart contract with state-of-the-art smart contract analysis
tools that are pre-installed on a virtual machine we provide for
this tutorial (see Section IV-A for requirements). Moreover, par-
ticipants leverage the insights from their analysis of the target
smart contract to exploit the analyzed contract. This includes
developing simple attacker contracts and crafting transactions
that trigger faulty behavior, such as reentrancy and integer over-
flow vulnerabilities. Finally, participants will develop patches
that prevent exploitation of the smart contract vulnerability.
Note that each exercise of smaller tasks providing guidance
for participants towards the overall goal of the exercise.

IV. AUDIENCE & LEARNING GOALS

A. Expected Audience

This tutorial is intended for those interested in smart
contracts and blockchain technologies in general. As the
tutorials covers an introduction to all relevant concepts of the
Ethereum platform, we do not assume any prior knowledge
of blockchain or smart contract technologies. However, we
consider it beneficial for the participants of this tutorial to
have a basic understanding of software security as well as
entry-level experience with basic Linux shell commands. We
further require the participants to bring laptops capable of
running x86-64 VirtualBox virtual machine images, either in
VirtualBox or any compatible virtualization solution.

B. Learning Goals

This tutorial introduces the participants to the basics of
smart contracts in the Ethereum ecosystem and common smart
contract vulnerabilities. The hands-on session on smart contract
analysis of this tutorial facilitates a deep understanding of

one of the most notorious vulnerabilities on this platform,
namely reentrancy, and how to exploit such vulnerabilities. By
introducing the participants to state-of-the-art analysis tools,
we also expect this tutorial to strengthen their sensitivity for
smart contract security within development processes. Finally,
the last part of our hand-on session provides useful hints on
defensive smart contract development.

V. PREVIOUS TUTORIALS

Ghassan Karame is professor at the Ruhr Universität Bochum
and held tutorials on Bitcoin and blockchain security at ACM
CCS 2016 [8] and at ASIACCS 2017. Lucas Davi and Ghassan
Karame are principal investigators in a joint project on smart
contract security. Lucas Davi is professor at the University
of Duisburg-Essen and held tutorials on software exploits and
defenses at the ACM/IEEE Design Automation Conference
(DAC) 2016 and ESWEEK 2015. Michael Rodler is a doctoral
student at the University of Duisburg-Essen with research
experience in the field of smart contract security [9], [10].
Sebastien Andreina is a research scientist at NEC Laboratories
Europe and has a large industry experience on blockchain
technology. Jens-Rene Giesen is a doctoral student at the
University of Duisburg-Essen collaborating with Sebastien
Andreina on smart contract security and compilers [11].

REFERENCES

[1] T. Sharma, Z. Zhou, A. Miller, and Y. Wang, “Exploring security
practices of smart contract developers,” apr 2022. [Online]. Available:
http://arxiv.org/abs/2204.11193

[2] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum
smart contracts (sok),” in International Conference on Principles of
Security and Trust. Springer, 2017, pp. 164–186.

[3] C. Williams, “$8.2M Lost as Visor Finance Suffers
Latest DeFi Hack,” Dec. 2021. [Online]. Available: https:
//cryptobriefing.com/8-2m-lost-visor-finance-suffers-latest-defi-hack/

[4] J. Benson, “Grim Finance Hacked for $30 Million in
Fantom Tokens,” Dec. 2021. [Online]. Available: https:
//decrypt.co/88727/grim-finance-hacked-30-million-fantom-tokens

[5] M. White, “"NFT mortgage lender" Bacon Protocol is
hacked for $1 million.” Mar. 2022. [Online]. Available:
https://web3isgoinggreat.com/?id=bacon-protocol-hacked-for-1-million

[6] C. Jentzsch. (2017) The History of the DAO and Lessons Learned.
[Online]. Available: https://blog.slock.it/the-history-of-the-dao-and-
lessons-learned-d06740f8cfa5

[7] p0n1. (2018) A disastrous vulnerability found in smart
contracts of BeautyChain (BEC). [Online]. Available:
https://medium.com/secbit-media/a-disastrous-vulnerability-found-
in-smart-contracts-of-beautychain-bec-dbf24ddbc30e

[8] G. Karame, “On the security and scalability of bitcoin’s blockchain,”
in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’16. Association
for Computing Machinery, pp. 1861–1862. [Online]. Available:
https://doi.org/10.1145/2976749.2976756

[9] M. Rodler, W. Li, G. Karame, and L. Davi, “Sereum: Protecting existing
smart contracts against re-entrancy attacks,” in Proceedings of the
Network and Distributed System Security Symposium (NDSS), 2019.

[10] M. Rodler, W. Li, G. O. Karame, and L. Davi, “EVMPatch: Timely and
automated patching of ethereum smart contracts,” in USENIX Security
Symposium (USENIX Security 2021), 2021.

[11] J.-R. Giesen, S. Andreina, M. Rodler, G. O. Karame, and L. Davi,
“Practical mitigation of smart contract bugs,” 2022. [Online]. Available:
https://arxiv.org/abs/2203.00364

http://arxiv.org/abs/2204.11193
https://cryptobriefing.com/8-2m-lost-visor-finance-suffers-latest-defi-hack/
https://cryptobriefing.com/8-2m-lost-visor-finance-suffers-latest-defi-hack/
https://decrypt.co/88727/grim-finance-hacked-30-million-fantom-tokens
https://decrypt.co/88727/grim-finance-hacked-30-million-fantom-tokens
https://web3isgoinggreat.com/?id=bacon-protocol-hacked-for-1-million
https://blog.slock.it/the-history-of-the-dao-and-lessons-learned-d06740f8cfa5
https://blog.slock.it/the-history-of-the-dao-and-lessons-learned-d06740f8cfa5
https://medium.com/secbit-media/a-disastrous-vulnerability-found-in-smart-contracts-of-beautychain-bec-dbf24ddbc30e
https://medium.com/secbit-media/a-disastrous-vulnerability-found-in-smart-contracts-of-beautychain-bec-dbf24ddbc30e
https://doi.org/10.1145/2976749.2976756
https://arxiv.org/abs/2203.00364

	Introduction
	Background
	Ethereum
	Reentrancy Vulnerabilities and Arithemetic Integer Bugs
	Tools

	Tutorial Format
	Audience & Learning Goals
	Expected Audience
	Learning Goals

	Previous Tutorials
	References

