
TEEREX: Discovery and Exploitation of Memory Corruption
Vulnerabilities in SGX Enclaves

Tobias Cloosters, Michael Rodler, Lucas Davi
University of Duisburg-Essen, Germany

{tobias.cloosters, michael.rodler, lucas.davi}@uni-due.de

Abstract
Intel’s Software Guard Extensions (SGX) introduced new

instructions to switch the processor to enclave mode which
protects it from introspection. While the enclave mode
strongly protects the memory and the state of the proces-
sor, it cannot withstand memory corruption errors inside the
enclave code. In this paper, we show that the attack surface
of SGX enclaves provides new challenges for enclave devel-
opers as exploitable memory corruption vulnerabilities are
easily introduced into enclave code. We develop TEEREX to
automatically analyze enclave binary code for vulnerabilities
introduced at the host-to-enclave boundary by means of sym-
bolic execution. Our evaluation on public enclave binaries re-
veal that many of them suffer from memory corruption errors
allowing an attacker to corrupt function pointers or perform
arbitrary memory writes. As we will show, TEEREX features
a specifically tailored framework for SGX enclaves that al-
lows simple proof-of-concept exploit construction to assess
the discovered vulnerabilities. Our findings reveal vulnerabil-
ities in multiple enclaves, including enclaves developed by
Intel, Baidu, and WolfSSL, as well as biometric fingerprint
software deployed on popular laptop brands.

1 Introduction

Intel recently introduced a sophisticated trusted execu-
tion environment (TEE) called Software Guard Extensions
(SGX) [33, 41, 55]. SGX allows application developers to
create so-called enclaves to encapsulate sensitive application
code and data inside a TEE that is completely isolated from
other applications, operating systems, and hypervisors. The
only trusted component in the SGX setting is the Intel CPU
itself. Most prominently, SGX features confidentiality and
integrity protection for any data that is written to its main
memory. In addition, SGX implements well-known Trusted
Computing concepts such as data binding and sealing as well
as remote attestation, i.e., ensuring the remote SGX enclave is
in a trustworthy state. Putting all these features together, this

allows a user to establish a secure channel directly to the SGX
enclave (which potentially runs in an untrusted cloud environ-
ment) and perform remote attestation to ensure the integrity
of the remote SGX hardware and enclave. That said, SGX is
a strong isolation mechanism for sensitive data (e.g., personal
information or cryptographic keys) as well as security-critical
code (e.g., for the sake of intellectual property protection).
It also found its way into commercial applications, e.g., fin-
gerprint sensor software (Section 5), DRM protection [22],
and privacy-preserving applications like Signal [53]. As such
a promising technology, SGX has been used and targeted
extensively in previous research. Many projects propose to
utilize SGX for enhanced security guarantees, e.g., processing
private data in public clouds [6, 60].

From its infancy, it was clear that SGX cannot withstand
all flavors of attacks [44]. In particular, SGX cannot protect
against two classes of attacks: (1) side-channel attacks and
(2) memory corruption attacks inside the enclave. The former
attack technique exploits shared resources (e.g., cache) to
steal secret information from within an enclave. This line
of research has become a very active research field [71, 76].
Especially micro-architectural side-channels have been shown
to be effective for attacking SGX enclaves due to the shared
micro-architectural state of enclaves and untrusted code [68].

To our surprise, memory corruption attacks have been
rarely investigated in the context of SGX. These attacks ex-
ploit programming errors (e.g., a buffer overflow) allowing
an attacker to take over the enclave, hijacking the enclave’s
control-flow, and perform code-reuse attacks such as return-
oriented programming (ROP) [62]. Further, the attacker can
also exploit these errors to corrupt enclave data variables and
pointers to launch data-oriented attacks such as information
leaks or data-oriented programming (DOP) [37]. Prior re-
search studied the applicability of offensive and defensive
techniques against memory corruption exploits. For instance,
Lee et al. [48] presented DARKROP, a code-reuse attack tech-
nique, which shows that the enclave code must not be known
to an attacker to successfully launch ROP attacks against the
enclave. Biondo et al. [7] showed that it is easily possible to



launch powerful code-reuse attacks due to particularities of
the Intel SGX SDK bypassing existing ASLR defenses such
as SGX-Shield [61].

However, prior research on memory corruption attacks al-
ways assumed the existence of memory errors, but did not
investigate whether or to which extent such errors exist in
real-world enclaves. Due to the rather slow adoption of the
SGX technology, this is not an easy question to answer. Ide-
ally, SGX enclaves contain only a minimal amount of code,
which can be manually audited or even formally verified to
not contain any programming mistakes. However, in our ex-
perience, legacy code bases are often ported to SGX enclaves.
These ports are often not revised to handle the specialties of
SGX enclaves and inherit security vulnerabilities from the
legacy code base or introduce new security vulnerabilities
particular to SGX enclaves. This is similar for newly written
SGX code by developers not familiar with the peculiarities of
SGX.

One common aspect of all SGX enclaves is that they always
link to an untrusted host application. The host application
loads an SGX enclave into its address space as it would do in
case of a shared library. Indeed, the Intel SGX SDK offers a
C-function like interface allowing bidirectional communica-
tion from the host application to the enclave. This interface is
highly critical as invalid input may lead to a privilege escala-
tion attack. As shown by prior research in the context of other
privilege separation technologies, this is especially true when
software is partitioned into privilege levels [13, 36]. That said,
whenever an enclave is called, it must take special care to
validate any input, particularly when the input contains code
or data pointers.

Contributions. In this paper, we demonstrate that the attack
surface of SGX enclaves provides new challenges for enclave
developers as exploitable memory corruption vulnerabilities
are easily introduced into enclave code due to a combina-
tion of the unique threat model of SGX enclaves and the
current prevalent programming model for SGX (i.e., the Intel
SGX SDK). We introduce the first SGX vulnerability analysis
framework, called TEEREX, to automatically analyze enclave
binary code based on symbolic execution (see Section 4). We
implement vulnerability detectors in TEEREX that take all the
peculiarities of SGX enclaves into account allowing develop-
ers to identify vulnerabilities in enclave binaries a priori, i.e.,
before they are utilized in production.

We especially focus our investigation on the validation
of pointers that are passed from the host application to the
enclave. Our findings demonstrate that developers are not
aware of the difficulties of securely implementing enclave
code when dealing with the critical host-to-enclave boundary.
We found that the automatically generated checks of the Intel
SGX SDK are insufficient for non-trivial pointer-based data
structures and a lack of proper manual validation of pointers
or pointer-heavy data structures can easily lead to memory
corruption vulnerabilities.

Using TEEREX, we identified several vulnerabilities in
publicly available enclave binaries developed at major compa-
nies such as Intel, Baidu, and Synaptics (see Section 5). Our
framework features detailed vulnerability reports significantly
simplifying the construction of proof-of-concept exploits to
assess the reported vulnerability. Even if no information on
the enclave is available, we are able to construct exploits (see
the fingerprint enclaves analyzed in Section 5.5 and 5.6). Our
exploits hijack the enclave’s control-flow, effectively bypass-
ing all security guarantees of the SGX technology. By per-
forming root-cause analysis we identified five vulnerability
classes that repeatedly occur in our dataset: Passing Data-
Structures with Pointers (P1), Returning pointers to enclave
memory (P2), Pointers to Overlapping Memory (P3), NULL-
Pointer Dereferences (P4), and Time-of-Check Time-of-Use
(P5).

Interestingly, among the enclaves we found vulnerable is
one enclave written by Intel engineers and published as an
open-source example enclave on Intel’s GitHub page [38].
Another interesting finding is a vulnerability in a sample SGX
enclave originally developed at Baidu with the Rust SGX SDK
(now an Apache Incubator project). Rust features memory
safety and as such has the potential to eradicate memory
corruption attacks. However, the host-to-enclave boundary is
inherently memory unsafe and as such, using memory-safe
programming languages in SGX does not automatically result
in secure enclave code.

2 Memory Corruption in SGX

The lack of built-in memory safety in the common system-
level programming languages C/C++ has led to a multi-
tude of memory corruption vulnerabilities in the last three
decades [66]. These vulnerabilities allow an attacker to per-
form a limited or (often) arbitrary write to memory. Such
malicious writes manipulate (1) control-flow information on
stack and heap (e.g., return addresses and function pointers)
or (2) so-called non-control data (e.g., decision-making vari-
ables). In both cases, the attacker influences the program’s
execution flow and eventually executes a malicious sequence
of instructions. In the recent past, we witnessed an arms
race between defenses and memory corruption attacks: data-
execution prevention [56, 57] effectively prevents malicious
code injection in data memory, but can be bypassed by means
of return-oriented programming (ROP) attacks as these only
reuse code already residing in code memory [62]. Software-
diversity based defenses [43, 47] mitigate ROP attacks by
randomizing the location of code in memory but are circum-
vented if an attacker manages to dynamically disclose the
code location [64]. Similarly, control-flow integrity (CFI) [1]
depends on the precision of the control-flow graph (CFG)
as CFG over-approximation opens the door for subtle ROP
attacks [11, 23, 30]. Lastly, even if one would be able to de-
velop a perfect CFI scheme, non-control data attacks would



still be a viable attack option as they only execute execution
paths that adhere to the program’s CFG [15, 37, 42, 58].

In general, SGX enclaves are as susceptible to memory
corruption attacks as any other system software. In fact, al-
most all enclaves are developed in C/C++ mainly because
the official Intel SGX SDK [40] provides a C/C++ develop-
ment environment. Only recently, memory-safe languages
such as Rust have been explored as a programming language
for SGX enclaves [73]. However, as we will show, even these
cannot guarantee that enclaves are free of memory corruption
vulnerabilities.

One particular challenge arises when launching memory
corruption attacks against SGX enclaves: since SGX enclaves
are encrypted in memory and can be shipped as an encrypted
binary [6, 60], an attacker cannot necessarily perform static
analysis on the enclave’s binary to search for interesting ROP
gadgets (i.e., enclave code sequences maliciously combined
to trigger malicious operations). Lee et al. [48] tackle this
challenge by repeatedly executing an enclave, triggering the
execution at different entry points, and analyzing memory
access to dynamically identify ROP gadgets. Note that this
attack does not apply to enclaves whose code addresses are
randomized for each instantiation of the enclave. On the other
hand, existing SGX randomization schemes such as SGX-
Shield [61] are not able to apply randomization to all of the
enclave’s code area: Biondo et al. [7] demonstrated that the
Intel SGX SDK provides enclave libraries that are not random-
ized and include several powerful ROP gadgets (i.e., gadgets
that allow control of many processor registers). Specifically,
these gadgets are invoked when resuming the context of an
SGX enclave (OCALL-return). Hence, an attacker only needs
to launch a memory corruption attack and provide counterfeit
context information to hijack a vulnerable enclave.

Problem Setting. We observe that existing memory corrup-
tion attacks against SGX [7, 48] exploit the host-to-enclave
boundary as this serves as entry point to trigger and halt en-
clave execution. Further, the existing attacks assumed that
the attacker is capable of hijacking the control flow of the
enclave’s code by means of a given memory corruption vul-
nerability. However, the open question is whether such vul-
nerabilities are likely to occur when developing enclaves. To
answer this question, we reverse-engineer public enclave code
and develop automated analysis techniques to assess the secu-
rity of enclaves regarding memory corruption vulnerabilities.
Our findings demonstrate that an erroneous implementation
of the API at the host-to-enclave boundary is often the root-
cause for memory corruption vulnerabilities in SGX code.

3 SGX Preliminaries

In this section, we provide background information on the
Software Guard Extensions (SGX) technology of modern
Intel processors and more specifically the Intel SGX SDK.

App

urts

Enclave

trts

E
E

N
TE

R
E

E
X
IT

Host

SGX

O
C

A
LL

E
C

A
LL

Host View Enclave View

readable (r- -/rw-)
executable (r-x)

Application Code

Enclave Code

Enclave Data

Application Data

Figure 1: General overview on SGX-enabled applications.

The Intel SGX SDK is currently the primary way to develop
SGX enclave code and is officially endorsed by Intel.

3.1 Host-Enclave Interface

Figure 1 provides a general overview of the memory layout of
SGX-enabled applications as well as the channel for host-to-
enclave interaction. The SGX enclave is part of a user space
application, called host process or application, which even-
tually loads and executes the enclave. Both host and enclave
share the same virtual address space with the exception that
the enclave resides in encrypted and integrity-protected mem-
ory. As shown in Figure 1, in the enclave view enclaves can
access all of the host application’s memory. Only the enclave
memory is assumed as trusted, whereas all other memory
parts are considered as untrusted.

The host process starts the enclave’s execution by issuing
the special EENTER instruction to enter the enclave. For this,
enclaves define entry points in the so-called thread control
structures (TCS), which are locked while in use by a thread.
This makes the number of TCS also the maximum number
of threads that can enter an enclave concurrently. A jump
from the executing enclave to code in the host application
results in a segmentation fault, effectively making host code
non-executable for the enclave. As such, the enclave must
explicitly leave enclave mode by using the EEXIT instruction
before the thread can execute any non-enclave code.

The Intel SGX SDK provides the concept of ECALLs (en-
clave calls) on-top of EENTER to control the transition from
application code to enclave code. For a simple enclave, not
requiring multi-threading, the SDK uses only one TCS which
is called with the index of the desired ECALL. First, the host
application calls the ECALL wrapper in the untrusted runtime
(urts). Next, the urts prepares the transition to the SGX en-
clave according to the so-called EDL file. Second, it executes
the EENTER instruction to transfer control to the enclave
code. More specifically, control is transferred to an enclave
entry point in the SDK’s trusted runtime (trts). The trts takes



enclave {
trusted { // ECALLs
public void ecall_size1( // explicit size

[in, size=100] void* ptr);
public void ecall_size2( // variable size in len

[in, size=len] void* ptr, size_t len);
public void ecall_user( // dangerous user_check

[user_check] void* ptr);
};

};

Figure 2: Example for the EDL syntax.

care of the context switch and sets up the enclave execution
environment: (1) it switches the stack to a stack in enclave
memory, (2) allocates secure memory and copies the argu-
ments into the enclave, (3) calls the actual ECALL function,
and finally (4) clears the registers before returning to the host
application’s code. Similarly, the SDK also supports calling
functions of the untrusted host application, which is referred
to as OCALLs (outside calls). For OCALLs, the trts saves the
enclave’s execution state to enclave memory and restores it
when the call returns.

3.2 The EDL Interface Specifications

The Intel SGX SDK uses the EDL (Enclave Definition Lan-
guage), a custom specification language to define the ECALL
and OCALL interface of an enclave. The EDL language re-
sembles a C-header file with additional syntax to specify
SGX-specific information. It allows the developer to specify
the prototypes of functions available as ECALL and the valid
data format of input arguments. Based on the EDL file, the
SDK generates wrapper code to transparently connect the
function stubs in the host application with the ECALLs in
the enclave. The parameters of ECALLs are transferred using
auto-generated data structures. When the application invokes
an ECALL, the SDK-generated code stores all parameters
in the prepared structure in the untrusted host application
memory. These will then be fetched by the SDK code in the
enclave and unpacked for the actual ECALL code.

The SDK must be able to determine the size of the argu-
ments to allocate a fitting buffer in the secure memory. Thus,
every pointer type has to be annotated with a size such that
the SDK can determine the size of the underlying buffer. Cur-
rently, the Intel SGX SDK supports copying C data types such
as basic integer types, composed basic data types (struct) with-
out nested pointers, 0-terminated/C-style strings, and pointers
to arrays of fixed length.

Figure 2 shows an example of different features of the EDL
language. In this example, a void* pointer is annotated with
[in, size=100]. The SDK will generate code that allocates
100 bytes in enclave memory and copies 100 bytes from un-
trusted memory into the enclave. Alternatively, the developer
can also specify dynamic lengths, which then refer to other

parameters by name. However, when writing the interface
definition in EDL, there are some peculiarities that have to be
taken into account. First, it is possible to disable the SDK fea-
tures. A pointer that is annotated as [user_check] is passed
to the enclave without any auto-generated check. It is up to
the enclave developer to validate the underlying buffer. Sec-
ond, compound data types are only shallow copied. They are
treated as buffers with a fixed size and are simply copied into
secure memory. Data structures are not recursively copied, i.e.
it is not checked if any of the fields in the structure is a pointer
type. So, even if a developer uses the Intel SGX SDK to pro-
tect the ECALL API, there are many cases that additionally
require custom validation code, which is error-prone.

4 TEEREX Symbolic Enclave Analyzer

We develop a novel symbolic execution framework, called
TEEREX,1 to automatically identify vulnerabilities of SGX en-
claves. Our framework does not only identify vulnerabilities,
but also generates a detailed vulnerability report which signifi-
cantly simplifies the process of constructing proof-of-concept
exploits against the vulnerable SGX enclave. It supports all
platforms supported by the Intel SGX SDK: Windows (PE)
and Linux (ELF) binaries and both 32 and 64-bit enclaves.
Note that we apply symbolic execution on the binary level to
be able to analyze closed-source, proprietary enclaves. Our
prototype of TEEREX supports the standard enclave format
of the Intel SGX SDK and leaves support of custom enclave
formats and loaders (e.g., the Graphene framework [67]) as
future work. Further, we focus our analysis on unencrypted
enclave code. In case the enclave code is encrypted neither
TEEREX nor any other static analysis tool can analyze the
enclave without knowing the secret key. TEEREX must be
able to read and properly load the enclave’s code.

In what follows, we describe the overall architecture of
TEEREX (Section 4.1), elaborate on several challenges and
how we tackled them (Section 4.2), and finally describe our
vulnerability detection engines in detail (Section 4.3).

4.1 Architecture

Symbolic execution was first proposed in the 70s as a general-
ization of testing [8, 46] and has become one of the standard
tools for high coverage testing and vulnerability analysis [5,
10, 12, 63]. However, the modeling of side effects caused by
the operating system (OS) is highly challenging, e.g., sym-
bolic execution must typically simulate and support all OS
system calls and manage a simulated file system [5]. For-
tunately, there are several SGX peculiarities that simplify
symbolic execution for SGX enclaves: enclave code is self-
contained (i.e., no external dependencies like libraries) and

1TEEREX stands for Trusted Enclave Ecall Runtime EXploiter



Preprocessor
(Static Analysis)

Identify
ECALLs

Symbolic Hooks
for common
Functions

Enclave
Binary

Exploit

TEEREX

Vulnerability Report

Controlled Pointer

Symbolic
Execution Trace

Vuln. Instruction

Vulnerability Class

Analyst

Emulation
of Special

Instructions

Pointer
Tracking

Symbolic
Explorer

Enclave
Loader

Vulnerability Detection

Controlled Branches

Controlled Writes

NULL-Pointer Dereferences

Symbolic ExecutionTEEREX

Figure 3: Architecture of TEEREX

isolated from the rest of the system. SGX enclaves are prohib-
ited to perform any system calls and any interaction with the
OS is handled by means of an OCALL to the untrusted host
application.

Figure 3 shows the architecture of TEEREX’ symbolic
analysis pipeline. The main goal of TEEREX is to find vulner-
able states during the symbolic exploration. Further, it aims
to collect meta-data to eventually generate a detailed vulner-
ability report. This is achieved by executing each ECALL
symbolically and checking every state for different vulnera-
bility classes. To produce accurate vulnerability reports, we
add pointer tracking to the symbolic execution engine. This
allows us to track pointer dereferences and propagate labels
that allow us to distinguish between data loaded from enclave
and host memory. As a result, TEEREX can spot vulnerable
instructions that read data from outside of the protected en-
clave memory. This is a necessary design decision as enclaves
can be loaded by arbitrary (malicious) host applications.

We leverage the well-known ANGR framework [63] as our
symbolic explorer. This allows us to extract memory con-
straints from enclave code, which is subsequently needed for
vulnerability analysis. ANGR itself does not support executing
SGX enclaves because: (1) ANGR cannot jump from the host
application to the enclave (2) there is no setup for an initial
environment to directly execute ECALLs, (3) enclaves utilize
CPU instructions not supported by ANGR, (4) TEEREX lever-
ages enclave specifics to scale over multiple processes and
machines, while ANGR is limited to one thread, and (5) the
common trusted functions for memory allocation are not di-
rectly supported by ANGR. Furthermore, ANGR does not
perform any vulnerability analysis by itself: its purpose is to
provide a robust and comprehensive framework to perform
static analysis and symbolic execution. As we will describe
in Section 4.2, TEEREX tackles all the above mentioned chal-
lenges. As shown in Figure 3, TEEREX is split into several
major components.

Preprocessor: The first step in the pipeline depicted in Fig-
ure 3 is to pre-process the enclave binary to (1) identify in-
structions and functions that cannot be executed symbolically,
and (2) to locate the ECALL table and extract the addresses
of the ECALL functions. This preliminary static analysis step
allows us to instrument specific binary instructions to increase
the performance and coverage of the analysis.

Enclave Loader: The enclave loader sets up the initial en-
vironment to execute one ECALL. It replaces the identified
common functions and special instructions with emulating
Python code. Further, it creates the argument structure for the
ECALL with unconstrained symbolic values.

Symbolic Explorer: The symbolic execution performed by
the ANGR framework can be distributed across multiple ma-
chines, as the ECALLs are analyzed individually. The results
are merged later in the vulnerability reports for the analyst.

Vulnerability Detection: TEEREX analyzes the symbolic
states during ANGR’s symbolic exploration for vulnerabilities
in the enclaves. It specifically analyzes instructions that access
memory and jumps. This is described in detail in Section 4.3.

Pointer Tracking: The majority of vulnerabilities in SGX
enclaves are due to insecure pointer usage and lack of pointer
validation. TEEREX implements pointer tracking by analyz-
ing all pointer dereferences and propagating labels between
symbolic values. More specifically, TEEREX uses a taint-style
analysis annotating every value loaded from memory with
the address, where the value was loaded from. This allows
TEEREX to determine the source of a value, e.g., whether
a function pointer used for an indirect call was loaded from
enclave, host memory, or loaded via a parameter passed to the
ECALL function.

Furthermore, TEEREX places hooks on Intel SGX SDK
functions that are used to validate whether an address is within
secure memory. Whenever the enclave uses one of these func-
tions, TEEREX forks the symbolic execution into two states:
one where the address is within enclave memory and one



where the address is outside enclave memory. This informa-
tion is used by TEEREX to assess whether a bug is exploitable
and report identified vulnerabilities more accurately.

Vulnerability Report: Finally, TEEREX produces a vulner-
ability report, which contains (1) the type of the vulnerability,
(2) the location in the binary, (3) the controlled pointer and its
position in the attacker-controlled input and (4) an execution
trace to reach the vulnerable instruction. The vulnerability
report provides sufficient detailed information to an analyst
for constructing a proof-of-concept exploit, even for closed-
source enclaves (see Section 5).

4.2 Challenges
Next, we will describe several challenges when applying sym-
bolic execution to enclave binaries and how our design tackles
them.

C1: Accuracy and Scalability. Enclaves built with the Intel
SGX SDK define only a few (often one) entry point in the
thread-control structure (TCS). This entry point is the trusted
runtime (trts) that is responsible for setting up the enclave
execution environment, calling exception handlers, and multi-
plexing ECALLs. For this, the arguments of an ECALL are
packed by the untrusted runtime (urts) to be unpacked upon
entering the enclave by the trts. This introduces an additional
layer of pointer indirection for all ECALL parameters. The
specifics of the enclave management in the trts are heavily
dependent on the intrinsics of the SGX instructions and the
enclave’s internal metadata, which are not present in the em-
ulated environment. This introduces high complexity and a
major challenge for a symbolic execution analysis because
(1) the enclave initialization routines result in many memory
accesses through symbolic addresses, which is a notoriously
hard problem for symbolic execution engines in general [5,
12], and (2) due to the low-level nature of the trts code the
symbolic execution lacks semantic information about the exe-
cution context when it finally reaches the ECALL functions.
Hence, it is not feasible to map symbolic memory ranges to
ECALL parameters once the symbolic execution analyzes the
actual ECALL function.

However, symbolically executing the whole trts code is
conceptually uninteresting for identifying vulnerabilities in
ECALLs as the trts is independent of ECALLs. As such, we
designed TEEREX in such a way that it is able to skip sym-
bolic execution of the trts and instead targets ECALL func-
tions directly. To do so, TEEREX first extracts the ECALL
table from the enclave binary. Next, symbolic execution is
started at the beginning of every ECALL separately. This al-
lows TEEREX to produce very accurate vulnerability reports
as it is now possible to directly control the arguments passed
to the ECALL function. At the same time, it reduces the over-
head of executing code that is not meaningful for identifying
exploitable bugs in enclaves. Furthermore, starting the analy-

sis for each ECALL function separately and skipping the SDK
runtime components allows parallelization of the symbolic
execution process. Note that ANGR is originally restricted to
one thread due to the limits of the Python implementation.

C2: Standard Memory Functions. Another source of path
complexity arises from the standard memory functions. Meth-
ods like memcpy or malloc are reimplemented in ANGR as
so-called SimProcedures at a higher level. Instead of symbol-
ically executing the binary code of a function like memcpy,
ANGR instead invokes the corresponding SimProcedure to
update the symbolic state. This is possible because most appli-
cations load these functions dynamically from a library in the
system, which can be easily intercepted. However, the self-
contained enclave code comes with its own trusted version
of these functions. As such, TEEREX searches the enclave
code for trusted versions of these functions and places hooks
to invoke the corresponding SimProcedure instead.

C3: Unsupported CPU Instructions. Since SGX has been
recently integrated into new Intel CPUs, there are several
advanced instructions included in enclave code that are un-
supported by the symbolic explorer either because they are
too new or too complex to be easily implemented symboli-
cally. This includes the primary SGX instruction enclu to en-
ter/exit an enclave, but also the non-SGX-specific instructions
rdrand and xsave/xrstor, which are used in OCALLs to
save and restore all registers from memory when the execution
passes the host-enclave boundary. To tackle this challenge,
we avoid executing the SGX-specific entry instructions but
directly invoke the ECALL functions during the symbolic
execution. We deal with other unsupported, but frequently
executed instructions, by hooking into them. The hooks re-
implement and emulate the instructions in Python to update
the symbolic state accordingly.

C4: Global State of Enclaves and Chains of ECALLs. En-
claves can be entered multiple times at different ECALLs with
different attacker-controlled input data, with each of the calls
altering the internal global state of the enclave. Hence, the
control-flow of an ECALL does not only depend on its argu-
ments, but also on all prior invoked ECALLs. Taking this into
account, an accurate symbolic exploration of an ECALL re-
quires exhaustive knowledge about the effects of all ECALLs.
To address this issue, TEEREX analyzes each ECALL individ-
ually and treats all (secure) global state (i.e., global variables
in the data and bss sections) of an enclave as initialized with
unconstrained symbolic values. This allows our tool to also
explore paths of an ECALL that are not reachable with an
enclave’s initial global state. However, the global state is typi-
cally not fully attacker-controlled but rather initialized to zero
or changed to some value by a different ECALL. Thus, the as-
sumption that the global state is completely unconstrained can
potentially lead to a situation, where our TEEREX wrongly
reports an attacker-controlled jump or write although the state
might be limited to only safe values. Nevertheless, the analysis



results are still useful because they can lift limited exploitation
primitives (e.g., null-pointer dereference or write to an arbi-
trary address with a fixed value) to full control-flow hijacking
attacks (see Section 5.5 for an example).

4.3 Vulnerability Detection Components
We implemented three major vulnerability detection compo-
nents in TEEREX: (1) attacker-controlled branches (control-
flow hijacking), (2) controlled writes, and (3) NULL-pointer
dereferences. To analyze an enclave, TEEREX first reads the
ECALL table from an enclave and symbolically executes the
ECALL functions sequentially. We pass fully symbolic ar-
guments to each ECALL function and symbolically explore
its code. Our symbolic execution tool currently supports de-
tecting two major classes of exploit primitives: control-flow
hijacking and controlled writes. In addition, we detect if the
enclave dereferences a NULL-pointer.

Control-Flow Hijacking. To identify control-flow hijacking
vulnerabilities, TEEREX searches for program paths, where
the enclave utilizes attacker-controlled data as a jump tar-
get. To be more precise, TEEREX detects and reports uncon-
strained jumps that are encountered during symbolic execu-
tion.

Anything that is attacker-controlled (i.e., input and the
whole address-space outside of enclave memory) is marked
as an unconstrained fully symbolic value during symbolic
execution. This means that when the ECALL uses one of
its symbolic arguments as a jump target, it will jump to an
unconstrained symbolic value. Furthermore, loading the jump
target from uninitialized memory also leads to loading an
unconstrained symbolic value. On the other hand, if the en-
clave validates the jump target pointer to be within a certain
set of allowed values, then the symbolic execution engine
will gather constraints on the symbol representing the jump
target during the analysis of the validation code. The jump
target is now tightly constrained to be within a certain set of
allowed—assumed to be safe—values, which will not trigger
an alarm. However, any use of an unconstrained pointer as a
jump target results in TEEREX reporting a controlled jump,
as here no prior validation was found and the attacker has full
control over the jump target.

Controlled Write. TEEREX searches for writes to arbitrary
(unconstrained) memory addresses during symbolic explo-
ration. Therefore, we track every pointer dereference and
propagate labels similar to taint analysis [17, 72]. This makes
it possible to infer the relation of a corrupting pointer to the
input arguments. This includes the levels of indirection and
corresponding offsets. When a pointer is utilized for a mem-
ory write, TEEREX checks whether the address is related to
attacker-controlled memory. If the address was loaded based
on input arguments, the attacker can directly control the ad-
dress used in the memory write instruction. Furthermore,

TEEREX uses the solver of the symbolic execution engine to
test whether the address of a write can possibly point to an
arbitrary memory location inside of the enclave memory. If
so, we can infer that we discovered an arbitrary write gadget.

Any write to an arbitrary address must be considered as
a vulnerability regardless of whether the value written is at-
tacker-controllable. For instance, a controlled write to an ar-
bitrary address with a fixed single byte value (e.g., 0x0a) is
often sufficient to corrupt a pointer in enclave memory. With
complete control of the address space in the SGX setting, the
attacker can map memory pages at almost any address. As
a result, it is sufficient if the attacker can partially corrupt
a pointer in enclave memory and make it point to insecure
memory, which still is a valid memory location (see exploit
in Section 5.5 for an example). As such, TEEREX reports any
memory write to an attacker controlled address, regardless of
the value written.

NULL-Pointer Dereference. On the x86 architecture, the
page at address 0 (NULL) in the virtual address space of a user
space program is a legitimate address. However, in C/C++,
pointers are typically initialized to the null-pointer and many
functions from standard libraries return the null-pointer to
indicate an error. As such, dereferencing a null-pointer is a
common problem in C/C++ code but typically not considered
critical as the null page is not mapped, i.e. the process only
crashes when trying to dereference a null-pointer. On the
contrary, in the SGX setting a null-pointer dereference is crit-
ical since the null page is typically not within trusted enclave
memory. As such, we need to consider it as controlled by the
attacker. TEEREX analyzes every memory access and checks
whether the address is pointing to the zero page mapped at
address 0 (typically < 0x1000). If this is the case, TEEREX
reports that the code is dereferencing a null-pointer.

5 Enclave Analysis Results

To evaluate the effectiveness of TEEREX on real-world en-
claves, we gathered a dataset consisting of open-source and
proprietary public enclaves. Table 1 provides an overview of
all the enclaves we analyzed with TEEREX. Our dataset con-
tains enclaves developed by well-known companies such as
Intel and Baidu. We also included SGX-protected fingerprint
software that is utilized in Dell and Lenovo laptops. Note that
it was highly challenging finding projects utilizing the SGX
technology. We assume this is due to the fact that SGX is a
rather new technology, hardware-support on client machines
is still not widely available, and as such, SGX is primarily
used in cloud settings where the enclave is simply not publicly
available.

We use the following methodology for analyzing the en-
claves in our dataset: first, we analyze the enclaves with
TEEREX. Second, using the vulnerability report of TEEREX,
we verify the vulnerabilities, perform root-cause analysis to



Project Name Analyzed
Version

Exploit Fixed Version(s) Source
Code

Target Number of
ECALLs

Intel GMP Example [38] 9533574f95b97 X 0491317b4112b X Linux amd64 6
Rust SGX SDK’s tlsclient [25, 73] 1.0.9 X f975a19982740 X Linux amd64 8
TaLoS [2, 27] bb0b61925347b X not planned X Linux amd64 207
WolfSSL Example Enclave [74] d330c53baff52 X 1862c108d7e3b X Linux amd64 22
Synaptics SynaTEE Driver 5.2.3535.26 X [20, 34, 49, 65] × Windows amd64 2 (76)*

Goodix Fingerprint Driver 2.1.32.200 X [21, 24] × Windows amd64 56
SignalApp Contact Discovery [53] 1.13 × - X Linux amd64 7

Table 1: Dataset of public enclaves and their susceptibility to exploitation.
* One ECALL immediately branches to 75 different actions.

identify the vulnerability, and finally construct a proof-of-
concept (PoC) exploit. In our PoC exploits, we aim to hijack
the instruction pointer while the processor is in enclave mode.
Given this capability, an attacker can utilize existing code-
reuse attack techniques to achieve arbitrary code execution [7,
62]. By constructing such a PoC exploit, we gain confidence
that the issues discovered by TEEREX are indeed serious
vulnerabilities.

For our PoCs we assume the standard SGX adversary
model [18, 55] in which the attacker has full control over
the user space and operating system/hypervisor. More specifi-
cally, our current PoCs assume a standard OS (Ubuntu 18.04
and Windows 10), which are configured or patched to allow
the attacker to map the page at address 0. The enclaves are
all compiled with the standard Intel SGX SDK. Note that our
PoCs do not need to bypass ASLR since the untrusted OS se-
lects the address space layout of the enclave. Our PoC exploits
attempt to get full control over the instruction pointer, which
is typically sufficient to perform arbitrary code execution [7].

Using TEEREX, we identified vulnerabilities in all of our
analyzed SGX enclaves except the SignalApp contact discov-
ery service [53]. In our analysis, we observed that the ECALL
interface of this enclave is comparatively small and simple.
For each of the vulnerable enclaves, we successfully devel-
oped PoC exploits of which all enable full instruction pointer
control. We performed responsible disclosure for all vulnera-
ble enclaves listed in Table 1. All vendors have acknowledged
our findings and all vendors, except for one, developed fixes
for the vulnerabilities we reported.

We also performed root-cause analysis on our findings
and identified several problematic code patterns that lead to
vulnerabilities. Table 2 shows an overview of the results of our
analysis. We identified and successfully abused all different
types of exploit primitives that TEEREX detected. Based on
our root-cause analysis we identified bug classes specific to
SGX that easily lead to vulnerabilities in enclave code. In
what follows, we discuss in detail the vulnerable enclaves and
bug classes we identified.

void e_mpz_add(mpz_t *c_unsafe,
mpz_t *a_unsafe,
mpz_t *b_unsafe) {

mpz_t a, b, c;
/* [computation code omitted] */
// mpz_set copies the underlying buffer
// of the biginteger "c" to the buffer pointer
// contained in the "c_unsafe" variable
mpz_set(*c_unsafe, c);

}

Figure 4: Excerpt of the vulnerable code in the Intel GMP
Example enclave.

5.1 Intel GMP Example
Intel provides the GNU Multiple Precision Arithmetic Library
for SGX and a corresponding demo application. The enclave
code takes two GMP big integers as parameters, performs
an arithmetic computation, and returns the result. TEEREX
identified an arbitrary write vulnerability in the enclave code,
which we used in our PoC exploit to gain arbitrary code execu-
tion. The data structure behind the GMP big integer internally
utilizes a pointer to refer to an underlying buffer that contains
the variably-sized data of the big integer. TEEREX identified
that this pointer is not sanitized allowing a memory write to
an arbitrary location. This vulnerability shows how likely it
is for SGX developers utilizing a third-party library, to miss
validating a pointer inside of opaque data structures.

The problem behind the vulnerability is that the numbers
passed to the enclave are GMP big integer objects represent-
ing arbitrary large integers. The GMP big integer data struc-
tures utilize dynamically allocated storage internally; they
contain a pointer to the underlying buffer that stores the actual
integer value. However, the enclave fails to properly validate
the pointer inside of the GMP data structure. Figure 4 shows
part of the vulnerable code: the enclave receives three big
integer parameters. The first one, called c_unsafe, is used
as an output parameter. The enclave uses functionality of the
GMP library that is not SGX-aware: the mpz_set function.
As such, the library function simply copies the output to the
attacker-controlled underlying buffer of the c_unsafe big in-
teger. This neglects the fact that the underlying buffer of this



Intel GMP Example

Rust SGX SDK’s tlsc
lient

TaLoS
WolfSSL Example Enclave

Synaptics SynaTEE Driver

Goodix Fingerprint Driver
B

ug
C

la
ss

es P1: Passing Data-Structures with Pointers • • • - • •
P2: Returning pointers to enclave memory • • • • - -

P3: Pointers to Overlapping Memory - • - - - -
P4: NULL-Pointer Dereferences - - • - • •
P5: Time-of-Check Time-of-Use - - • - - -

E
xp

lo
it

Pr
im

iti
ve Control-Flow Hijack - • • • • •

Controlled Write • - - - • •
NULL-pointer Dereference - - • - • •

Table 2: Overview of results of our analysis of public enclave code. Some patterns are not applicable for every enclave, because
the relevant code constructs are not used or the source is unavailable.

big integer can actually point to arbitrary memory, including
enclave memory.

This vulnerability allows an attacker to perform an arbi-
trary memory write, with controlled content and controlled
size. TEEREX identifies the arbitrary write vulnerability in
multiple ECALLs. They all share the same structure as the
one depicted in Figure 4. In our proof-of-concept exploit,
we abuse the e_mpz_add ECALL: we set the value of the
underlying buffer of the big integer parameter a_unsafe to
our payload, the big integer b_unsafe to a big integer ini-
tialized as 0, and the underlying buffer of c_unsafe to our
target address for the arbitrary write. We choose an address
on the enclave stack that points to a return address used by the
enclave. This effectively allows us to write a ROP-payload
directly onto the enclave stack.

Intel acknowledged the problem, updated their documen-
tation, and fixed the issue by using serialization: instead of
passing pointers to GMP structures, the demo code now se-
rializes GMP big integer objects to strings and passes those
strings over the host-to-enclave boundary. The enclave then
deserializes the data structure, computes the result, and finally
returns the serialized result back to the host application. Since
no longer GMP big integer pointers are passed between the
host and enclave, this fixes the vulnerability and removes the
problematic pattern Passing Data-Structures with Pointers
(P1) from the enclave code, which is defined in the following:

P1: Passing Data-Structures with Pointers. This type of
vulnerability occurs due to complex data types in C/C++ that
are using pointers as their primary mechanism to form com-
plex data structures like lists, trees, or maps. When program-
ming with the Intel SGX SDK, the interface provided by an
enclave allows utilization of complex data types using point-
ers. However, currently the Intel SGX SDK does not automat-
ically perform a recursive copy/validation of pointer-heavy
data structures. As a consequence, it becomes dangerous to

pass data structures containing pointers to an enclave. Any
data structure containing pointers must be treated the same
way as pointers annotated with the [user_check] attribute.

5.2 WolfSSL Example Enclave
WolfSSL [75] is a small TLS/SSL library without external de-
pendencies designed for embedded devices and applications
that require to be small and self-contained. It also features
SGX support. The wolfSSL project offers an enclave that
showcases how to use the wolfSSL TLS library within SGX.
The enclave allows the host application to terminate a TLS
connection within the SGX enclave thereby protecting all
cryptographic secrets used by TLS. However, the enclave
exposes a large subset of the WolfSSL API via the ECALL
interface. We analyzed the enclave with TEEREX and discov-
ered a control-flow hijacking primitive in the enclave. Our
root-cause analysis revealed the following pattern, which is
common to all the TLS enclaves we analyzed.

P2: Returning pointers to enclave memory. We observed
that many enclaves provide functionality to allocate a resource
in secure memory, e.g., a TLS session or a file object, and then
return a reference to this resource to the host application. The
next time the host application attempts to use this resource,
the corresponding function of the enclave is called with that
reference as a parameter. In C/C++ code, this is typically
achieved by returning and passing a pointer to the object
containing the resource’s data. The enclave typically validates
that the given pointer indeed points to secure memory.

In the case of wolfSSL, the legacy API of the TLS library
was almost directly accessible through the ECALL API of the
WolfSSL Example Enclave, only secured by the in-secure-
memory check, which still entailed passing the pointers of
the TLS context, TLS session, and I/O buffer objects between
host and enclave. These data structures are part of a legacy



/* ECALL Definition in EDL */
// a pointer to enclave memory returned
public WOLFSSL* enc_wolfSSL_new([user_check] WOLFSSL_CTX* ctx);
// pointer is passed to enclave
public int enc_wolfSSL_connect([user_check]WOLFSSL* ssl);
// ...

/* C Source Code */
typedef int (*CallbackIOSend)(WOLFSSL *ssl, char *buf,

int sz, void *ctx);
/* WolfSSL session type */
struct WOLFSSL {

WOLFSSL_CTX* ctx;
/* ... */
// attacker-controlled function pointer!
CallbackIOSend CBIOSend;

}
// ...
int enc_wolfSSL_connect(WOLFSSL* ssl) {
À if(sgx_is_within_enclave(ssl, wolfSSL_GetObjectSize()) != 1)

abort();
/* ... */ }

Figure 5: Relevant parts of the EDL definition and C source
code of the tlsclient enclave. Note the insufficient valida-
tion À.

API which were not designed with a split trust model in mind
and it is very hard for the enclave to thoroughly validate the
pointers forwarded to the legacy interface. Figure 5 shows
the definition of the ECALL interface: a pointer to a WOFLSSL
structure is passed with the [user_check] attribute. Note,
that the WOLFSSL data structure contains a function pointer
used for issuing callbacks in the TLS library (CBIOSend).
TEEREX identified a control-flow hijacking primitive by pass-
ing a fake WOLFSSL data structure with an attacker-controlled
CBIOSend function pointer.

However, the WolfSSL Example Enclave still implements
a pointer validation routine: it validates that the pointer does
point to enclave memory (Figure 5: À). However, this pointer
validation is not sufficient to protect the enclave. It is com-
mon that an attacker can actually control parts of the en-
clave memory, simply by providing input arguments. For
example, an attacker can abuse a different ECALL with
a buffer parameter to force the enclave to copy arbitrary
data into enclave memory. In our PoC exploit, we abused
the function enc_wolfSSL_CTX_use_PrivateKey_buffer
to copy a fake WOLFSSL structure into unrelated enclave
memory (a simple buffer). Thereafter, we call the function
enc_wolfSSL_connect, which uses the attacker-controlled
CBIOSend function pointer in the fake data structure, which
now resides in secure memory.

This could either be fixed by using session identifiers as it
was done by the Rust SGX SDK’s tlsclient enclave (cf. Sec-
tion 5.3) or—to not change the external API—by saving all
created session pointers in secure memory and only accepting
these known pointers.

/* ECALL Definition in EDL */
public void* tls_client_new()
public int tls_client_write(

[user_check] void* session,
[in, size=cnt] char* buf,

int cnt);

// Rust Source Code
pub extern "C" fn tls_client_write(

session: *const c_void,
bu: * const c_char,
cnt: c_int) -> c_int {

À if session.is_null() {
return -1;

}

Á if rsgx_raw_is_outside_enclave(
session as * const u8,
mem::size_of::<TlsClient>()) {

return -1;
}
rsgx_lfence();

let session = unsafe { &mut *(session as *mut TlsClient) };

Figure 6: Vulnerable Rust code: Check Á can be bypassed.

5.3 Rust SGX SDK’s tlsclient/server

The Rust SGX SDK [25] aims at introducing memory safety
for SGX. As such, enclaves developed with this framework
should very unlikely suffer from memory corruption bugs. To
validate this, we analyze code shipped with the Rust SGX
SDK that shows how to run a TLS server and client inside of
an SGX enclave. The code consists of two similarly structured
applications and enclaves that interconnect using TLS to send
an HTTP request. This shows how secure communication can
be achieved while secret keys remain in protected memory.
Since both applications are similar in terms of their enclave
interfaces, we only discuss the tlsclient enclave. The enclave
API consists of functions to create a new TLS session and then
utilize the session to send and receive data securely. TEEREX
discovered a control-flow hijacking primitive in the enclave
function tls_client_write that abuses the session pointer
parameter of the ECALL. The root cause for the vulnerability
of this enclave is the same pattern that already made the Wolf-
SSL Example Enclave (Section 5.2) vulnerable (Returning
pointers to enclave memory (P2)). The TLS session object
is allocated within enclave memory with the tls_client_
new function and then passed to further API calls like tls_
client_write. The pointer has to be marked as user_check.
Otherwise, the SGX SDK would reject the raw pointer. How-
ever, there is a variable nested in the TLSSession object that
contains a pointer to a virtual method table (vtable) for dy-
namic dispatch. By controlling the pointer to the object, the
attacker controls the pointer to the virtual method table and
gains full control over the target of an indirect call.

The enclave code, as shown in Figure 6, implements two
pointer validation checks on the session pointer: (1) the



pointer is checked to be not null À and (2) not to be out-
side of the enclave Á. However, the check at Á is not
sufficient to protect the enclave since there are two pos-
sible bypasses. First, the attacker can abuse a different
ECALL to copy attacker-controlled data from the host ap-
plication into the enclave memory (cf. Section 5.2). Sec-
ond, the check at Á neglects that there are three memory
states: outside, within the enclave, and partially inside the en-
clave. Hence, outside_enclave and within_enclave are
not strictly inverse, both return false for any memory that
is neither strictly outside nor strictly within the enclave. The
intention of the enclave developer for check Á was to as-
sess whether the session pointer does indeed point to mem-
ory inside of the enclave, i.e. return an error if it is not
strictly within (if ! rsgx_raw_is_within_enclave(...)
return -1;). This error belongs to the following pattern.

P3: Pointers to Overlapping Memory. For validating that
an object is in secure memory, the Intel SGX SDK pro-
vides two functions: sgx_is_within_enclave and sgx_is_
outside_enclave. These functions check whether a mem-
ory area is strictly outside or inside enclave memory. How-
ever, they return unexpected results when handling edge-cases,
where a memory buffer is overlapping both areas. Figure 7
shows three different scenarios with buffers located either out-
side, inside, or outside as well as inside enclave memory. The
validation functions from the Intel SGX SDK return false
for buffers that are overlapping both memory areas.

In the case of the Rust SGX SDK’s tlsclient, we can abuse
the buggy check in Á to bypass the pointer validation rou-
tine in our PoC exploit. We allocate a page in the virtual
address space right before the first page of enclave memory.
Thereafter, we place a fake TLSSession object such that the
last byte of the object is still part of enclave memory (i.e.,
the overlapping case). This construction bypasses the vali-
dation at Á since the memory is not strictly outside enclave
memory. However, the important part—the address of the
vtable—is still stored in untrusted host memory. Hence, we
can fully control the target of an indirect jump and launch
a code-reuse attack. Our findings demonstrate that using a
memory-safe language like Rust does not automatically en-
sure memory-safe enclaves. That is, the entire software stack
must be guaranteed to be memory-safe.

The developers of the Rust SGX SDK acknowledged the
problem and promptly updated their code. Akin to our sugges-
tions to the developers, the enclave code now utilizes session
identifiers instead of pointers to identify TLS sessions; similar
to using file descriptors on Unix-like systems. Upon session
creation in tls_client_new, the pointer to the TLS session
object is now inserted into a hashmap, which is then used to
map the identifier in subsequent ECALLs. Hence, no pointers
are passed on the host-to-enclave boundary. This drastically
reduces the attack surface of the enclave and eradicates both
the vulnerability pattern Returning pointers to enclave mem-
ory (P2) and Pointers to Overlapping Memory (P3).

sgx_is_outside_enclave(A, sz) == true
sgx_is_within_enclave(A, sz) == false

sgx_is_outside_enclave(B, sz) == false
sgx_is_within_enclave(B, sz) == true

sgx_is_outside_enclave(C, sz) == false
sgx_is_within_enclave(C, sz) == false

Address Space

A

B

C

C

E
n

c
la

v
e
 M

e
m

o
ry

Figure 7: Possible buffer locations in SGX.

5.4 TaLoS

The open-source enclave TaLoS supports terminating TLS
inside of SGX enclaves within production webservers such as
the Apache webserver [27]. To achieve this, TaLoS introduces
SGX specific patches to the libressl TLS implementation. The
enclave exposes almost the entire TLS API of libressl over
the ECALL interface, which utilizes many pointers that are
marked as [user_check]. As such, this enclave contains the
vulnerability patterns Passing Data-Structures with Pointers
(P1) and Returning pointers to enclave memory (P2). How-
ever, the enclave does not simply return a raw pointer as it
is the case for the enclaves WolfSSL Example Enclave (Sec-
tion 5.2) and Rust SGX SDK’s tlsclient/server (Section 5.3).
Instead, it uses a shadowing mechanism that synchronizes se-
lected fields (e.g. of the primary SSL data structure) between
the trusted and untrusted world. This allows the host applica-
tion to access some fields of the data structure, while keeping
the actual copy in enclave memory [2]. This design choice
was taken to allow unmodified web servers to interact with the
SGX wrapped TLS API. In principle, the shadowing mecha-
nism is a legitimate pointer validation mechanism and allows
the enclave to verify pointers passed by the untrusted host
application. However, the exposed API is quite comprehen-
sive and TEEREX discovered an ECALL that uses a function
pointer in its data structure, where shadowing was missing.
This underlines the need for automated analysis tools, such as
TEEREX, to automatically identify missing pointer validation
code. Furthermore, we identified many potential sources for
vulnerabilities in the code that handled the shadowing mecha-
nism. The shadowing mechanism failed to take into account
that the NULL pointer is a valid pointer in the SGX context.

P4: NULL-Pointer Dereferences. The special NULL (or
nullptr) value is used in C/C++ code to signal that a pointer
is not referencing any object. However, it is represented by
the numeric value 0, but on x86 systems (using virtual mem-
ory) the address 0 is a valid address. Typically, there is no
valid memory mapped to address 0. Hence, any accidental
NULL pointer dereference results in a crash of the process
(SEGFAULT). However, a malicious host program or OS can
map valid data at the page at address 0. Thus, a NULL pointer
dereference turns into a valid load and a bogus value from
the page at address 0 is read instead of crashing the enclave.



BIO* ecall_SSL_get_rbio(SSL *out_s) {
À // out_s is not checked, can be in enclave memory
/** Shadowing Mechanism **/
hashmap* m = get_ssl_hardening();
// returns NULL for invalid out_s

Á SSL* in_s = hashmapGet(m, out_s);
// copy arbitrary enclave memory to the NULL page

Â SSL_copy_fields_to_in_struct(in_s, out_s);
Ã /* [...] libressl logic */
// copy from the NULL page to arbitrary enclave memory

Ä SSL_copy_fields_to_out_struct(in_s, out_s); // [...]

Figure 8: Relevant parts of the EDL definition and C source
code of the TaLoS enclave.

This is similar to the kernel scenario, where the address 0 is
typically a valid address in the user space. As a mitigation,
many OS kernels disallow mapping any memory at address 0.
However, for NULL pointer dereferences inside of SGX en-
claves, there is currently no mitigation available, since the OS
is considered untrusted in the SGX threat model. As such, an
enclave must assume that the page at address 0 is mapped
into the address space.

Figure 8 shows the relevant code that contains a NULL-
pointer dereference. This snippet contains two mistakes: first,
the pointer parameter out_s is supposed to point to the out-
side version of the TLS structure. However, the enclave does
not validate that the out_s actually points to outside enclave
memory (À). As such, an attacker can simply pass some mem-
ory location inside of the enclave memory. The function call
at Á retrieves the shadowed SSL object that is within enclave
memory. However, when passing a bogus pointer this function
will return a NULL-pointer to signal an error, which is not
checked by the enclave. The function call at Â is the synchro-
nization function that copies selected fields from the outside
SSL structure to the inside structure. In case of an attack, the
out_s pointer does point to an arbitrary location inside of the
enclave, e.g., a secret key and in_s points to the NULL-page.
Thus, the enclave copies arbitrary data from enclave memory
to the NULL-page resulting in an arbitrary read exploit.

Furthermore, the same bugs shown in Figure 8 can also
be turned into an arbitrary write exploit primitive: for the
function call marked with Ä, the enclave synchronizes back
the fields of the inside structure to the outside copy. In our
NULL-pointer dereference attack, the variable in_s points
to the NULL-page, while the variable out_s points to some
arbitrary enclave memory location. However, we have to over-
come a race condition challenge to also control the value
that is written. Recall that the enclave first reads the value
from enclave memory and thereafter writes the value to the
NULL-page (Â). Hence, it would write back the same value
to enclave memory that was copied to the NULL-page. To
tackle the race condition, we execute a different thread in the
host application and change the contents of the NULL-page
while the code between the two synchronization functions (Ã)
is executed. This effectively gives an attacker the arbitrary

write capability. Note that prior research has shown that it is
trivial to win race conditions in the SGX threat model. Since
the attacker is in full control of the OS and the scheduling of
the enclave’s thread, the attacker can even single-step through
the enclave code [70].

P5: Time-of-Check Time-of-Use. Enclaves run in an envi-
ronment where it is easy to introduce Time-of-Check Time-
of-Use (TOCTOU) bugs. While the enclave developer can
limit how many threads can concurrently enter an SGX en-
clave, the enclave developer has no control over the untrusted
and possibly malicious OS. When accessing host applica-
tion memory, the enclave must assume that a separate host
application thread can always change any content in the un-
trusted memory area. As a consequence, an enclave cannot
validate any data structures outside of the enclave memory.
In the TaLoS example, we utilized a race condition similar to
TOCTOU bugs to exploit the enclave.

5.5 Synaptics SynaTEE Driver
Synaptics recently started to utilize SGX enclaves to securely
process fingerprint data on Windows in Lenovo and HP lap-
tops. The closed-source fingerprint driver contains a user
space component with an SGX enclave. TEEREX discovered
a control-flow hijacking primitive that can be exploited due
to a NULL-pointer dereference (cf. TaLoS in Section 5.4).
The enclave utilizes a pointer in the global state, which is
initialized as a NULL pointer. Normally, this pointer would
be initialized to point to a data structure inside enclave mem-
ory, but the attacker could potentially load the enclave and
trigger the NULL pointer dereference without initializing this
pointer.

We chose not to exploit the NULL-pointer dereference
since the latest Windows versions strictly prohibit mapping
a page at address 0. That being said, the SGX threat model
assumes that the attacker has full control over the OS, i.e., an
attacker with OS privileges can disable this mitigation in the
Windows kernel. We demonstrated the feasibility of this in our
PoC exploit for the Goodix enclave (see Section 5.6). To avoid
patching the Windows kernel and to make our PoC exploit
more portable, we utilize a second finding of TEEREX: a
limited write exploit primitive due to an improperly sanitized
pointer heavy data structure that is passed to the enclave. This
exploit primitive allows us to write a fixed byte-value to an
arbitrary address. We used this in our PoC exploit to first
corrupt the pointer in the global state of the enclave to make it
point to a fixed address in untrusted host application memory.
Next, we mapped our exploit payload to this fixed address
thereby avoiding allocation of a page at address 0.

We chained two exploit primitives in our PoC Exploit, both
discovered by TEEREX. The vulnerabilities we identified
are due to the code patterns Passing Data-Structures with
Pointers (P1) (cf. Intel GMP Example in Section 5.1) and
NULL-Pointer Dereferences (P4) (cf. TaLoS in Section 5.4).



5.6 Goodix Fingerprint Driver

The fingerprint reader driver is shipped on recent Dell lap-
tops and uses SGX enclaves to process biometric data. The
black-box analysis of TEEREX discovered multiple limited
controllable write primitives to arbitrary addresses. For our ex-
ploit, we combined two of them to achieve a full control-flow
hijack.

The first primitive, denoted as C16, discovered by TEEREX
copies a 16 bit value loaded from a NULL-pointer (see Sec-
tion 5.4) to the address supplied in the ECALL argument by
an attacker. We patched the Windows kernel using a kernel
debugger and disabled the check that prevents Windows user
space applications to map the address 0, allowing us to exploit
the NULL-pointer dereference in the enclave. While the at-
tacker controls the value and the address in the first primitive
C16, due to the limited size of the controlled value, this prim-
itive can only partially overwrite the instruction pointer. Al-
though this partial overwrite is often sufficient [26], we com-
bine it with a second primitive also discovered by TEEREX
to achieve a full (64-bit) arbitrary write. The second primi-
tive, denoted as F64, is a limited write primitive that copies a
64 bit value loaded from a fixed address A that is within se-
cure memory to an attacker-controlled pointer in the ECALL
argument. We execute primitive C16 four times to copy a full
64 bit value in 16 bit chunks to the address A, which is used in
primitive F64. This gives us control over the 64 bit value that
is written by F64. Subsequently, we can then use primitive F64
to overwrite, e.g., a return address in secure memory.

The analysis of this enclave demonstrates that the vulner-
ability report produced by TEEREX (cf. Section 4) provides
sufficient information to easily create a PoC exploit for en-
claves where source code is not available. We only needed to
combine two primitives and for both TEEREX reported the
source and target addresses of the writes and the necessary
ECALL arguments.

5.7 Vulnerability Disclosure

We provided the developers of all the vulnerable enclaves a
detailed report explaining the problematic code patterns, a
working PoC exploit, and suggested fixes. All of them con-
firmed our findings. We supported the enclave developers
by validating the patched versions with TEEREX. Table 1
shows the version number of the fixed enclave code, as far as
they were available to us. As a response to our report, Intel
changed the code of the Intel GMP Example enclave to use
a serialization-based approach for parameters crossing the
host-to-enclave boundary. Since serialization avoids passing
raw object pointers at the host-to-enclave boundary, the vul-
nerabilities were successfully fixed. The developers of both,
the WolfSSL Example Enclave and the Rust SGX SDK’s
tlsclient, followed our suggestions and stopped using pointers
as resource references. Both enclaves now utilize integer iden-

0 10 20 30 40 50 60 70

Less than 10s runtime Out of MemoryTimeout
Finished
within
limits

intel-fixed intel-vuln rust-fixed rust-vuln wolfssl-fixed wolfssl-vuln

0

200

400

600

800

1000

1200

R
un

tim
e 

(s
)

0

5

10

15

20

M
em

or
y 

us
ag

e 
(G

B
)

Runtime
Memory usage

Figure 9: Runtime and memory usage of the benchmarked
enclaves.

tifiers to look up the respective TLS session objects in a table
inside of enclave memory. The original developer of the Ta-
LoS acknowledged our findings, but notified us that he lacks
the resources to develop fixes. As such, this project must now
be considered a deprecated and abandoned research project.
Synaptics issued CVE-2019-18619 [20] for the vulnerabili-
ties we reported. Given the high sensitivity of biometric data,
they promptly developed a patch. After coordinated disclo-
sure with OEM vendors patches were published in July, 2020
(HP [34], Lenovo [49]). The security team of Goodix devel-
oped a patch that we successfully verified with TEEREX and
Goodix issued CVE-2020-11667. As of July, 2020 patched
drivers for Dell laptops are available [24].

6 Performance and Accuracy

In this section, we analyze the efficiency and effectiveness of
TEEREX. We focus our analysis on the three enclaves Intel
GMP Example, Rust SGX SDK’s tlsclient, and WolfSSL Ex-
ample Enclave since for these (1) the source code is available,
and (2) a patched version already exists. These insights allow
us to compare TEEREX’ behavior on the vulnerable and fixed
enclaves and reason about the occurrences of false alarms.

6.1 Performance and Memory Usage

Our strategy is as follows: We analyze each ECALL using
TEEREX for a maximum of 20 min using one CPU core up
to a memory limit of 24 GB. The analysis was conducted on
an AMD EPYC Processor with 3.7 GHz and 100 GB RAM
allowing us to analyze up to 4 ECALLs in parallel. TEEREX
utilizes angr version 8.20.1.7 running on CPython 3.6.9 and
Ubuntu 18.04.4. All the exploitable primitives that we utilized



in our PoC exploits are discovered within our time window
of 20 min.

For the three enclaves (Intel GMP Example, Rust SGX
SDK’s tlsclient, and WolfSSL Example Enclave), we analyzed
the 73 ECALLs in detail. The results are depicted in Figure 9:
the average memory usage over all ECALLs of those enclaves
is 8.8 GB (σ = 9.8GB). The significant deviation for memory
usage is mainly due to the highly variable size and complexity
of the ECALLs. Out of the analyzed ECALLs 40 % finished
within 10 s, 52 % finished within the given limits, and 48 %
exceeded the limits (23 % by time, also 23 % by memory, and
1 % by time and memory).

Our analysis in Section 5 demonstrates that using this analy-
sis strategy is sufficient to successfully uncover problematic
code patterns. While symbolic execution is a powerful analy-
sis technique, it requires high computing resources (CPU time
and memory) to explore the state space of a program. Hence,
it is only natural that the analysis of some of the ECALLs
hits the resource limits we defined for the benchmarking ex-
periments. However, during a security analysis of an enclave,
the analyst can schedule more time and memory as needed
for specific ECALLs. Furthermore, we did not yet implement
all of the advanced techniques to improve the efficiency of
symbolic execution that was proposed in prior work [4, 5, 12].
This was simply not necessary to discover vulnerabilities in
our set of analyzed enclaves.

6.2 Accuracy and False Alarms

Since the analysis of TEEREX does focus on soundness rather
than on completeness, the number of false alarms is rather
small. Note that a complete false positive analysis is impos-
sible as we lack any ground-truth, i.e., all of our findings
are zero-day vulnerabilities and we are unable to provide any
comparison of TEEREX to related approaches since there does
not yet exist any other automated vulnerability discovery ap-
proach for SGX enclaves. Hence, we opted for the following
strategy: we confirmed TEEREX’ alarms by constructing PoC
exploits and disclosing our findings to the affected vendors.
After the vendors fixed the vulnerabilities, we manually veri-
fied that the enclaves’ source code (for Intel GMP Example,
Rust SGX SDK’s tlsclient, and WolfSSL Example Enclave)
does not contain further vulnerabilities. These patched en-
claves give us a limited form of ground-truth as any finding
in the updated enclaves is a false alarm.

In our analysis of the three vulnerable enclaves TEEREX
produced 149 findings. By constructing a proof-of-concept
exploit based on the findings of TEEREX, we confirm that
those findings were indeed true alarms. We selected gadgets
in shallow program paths containing the least conditions on
the initial state (i.e., constraints on the enclave’s pre-ECALL
state) and then constructed a PoC exploit based on the selected
gadgets.

Thereafter, we analyzed the patched versions of the en-
claves. TEEREX confirmed that our original and exploited
findings are not longer present in the patched enclaves. How-
ever, the analysis of TEEREX still produced 56 findings. Our
root-cause analysis of those findings reveals a possible indi-
cator of a false alarm in TEEREX’ reports: global memory
is treated as unconstrained symbolic value by TEEREX (see
challenge C4 in Section 4.2). For example, the patched Intel
GMP Example utilizes an initializing ECALL which sets up
a function pointer in global memory. TEEREX discovered
that other ECALLs do not check that function pointer be-
fore use. Due to the ECALL-centric analysis of TEEREX, the
function pointer is considered unconstrained and a controlled
jump is reported. However, in reality, the function pointer
can only take fixed values. Thus, this finding on its own is
not exploitable. On the other hand, in case TEEREX would
have also discovered a controlled write primitive, we still
would have been able to construct a proof-of-concept exploit.
The false positives that we encountered in the other patched
enclaves (Rust SGX SDK’s tlsclient and WolfSSL Example
Enclave) are caused by the same issue. In our future work, we
plan to annotate and filter such false alarms as low severity
based on TEEREX’ pointer-tracking component.

7 Discussion

Analyzing OCALLs. TEEREX puts its focus on ECALLs as
those are the prevalent way to pass data to enclaves. Further,
since OCALLs are only reachable through ECALLs, their
support is a precondition for OCALLs. Nevertheless, we plan
to implement OCALL-support in our future work.

Handling the OCALL interface is particularly challenging
due to the lack of semantic information. From a binary analy-
sis point-of-view, an OCALL is not easily distinguished from
a regular return from an ECALL, i.e., both utilize the EEXIT
instruction to exit the enclave. As such, TEEREX will stop
executing a program path in the enclave once an OCALL
(or EEXIT) is reached and thus will not analyze any ECALL
code beyond the first OCALL. To overcome this limitation,
we utilize symbol information to detect OCALL invocations
in TEEREX. If TEEREX discovers that an OCALL is exe-
cuted, e.g., due to symbols and functions of the Intel SGX
SDK, then TEEREX will skip the execution of the OCALL
and set the return value of the OCALL to an unconstrained
symbolic value. This allows TEEREX to continue the analy-
sis after the OCALL with a rough over-approximation of the
OCALL’s effects since the actual semantics of the OCALL
are not emulated. We leave the development of a heuristic to
detect OCALLs on a binary-level without symbols as future
work.

Manual Effort with TEEREX. TEEREX automatically de-
tects vulnerabilities in enclaves. More specifically, TEEREX
reports the exploit primitives resulting from the vulnerabilities.



For instance, TEEREX will show the location of a controlled
write combined with the constraints (i.e., possible values) on
the address, value, and path that leads to the write instruction.
An analyst must then inspect the report and decide whether
the findings or any combination of findings is exploitable, or
if the alarm is a false positive. While the information reported
by TEEREX is sufficient to construct PoC exploits, we plan to
incorporate exploit generation schemes as proposed in prior
work [3, 12, 32, 35] into TEEREX to automatically synthesize
a malicious host application that reproduces the crash.

Fuzzing Enclaves. Coverage-guided fuzzing is another
prominent technique to identify vulnerabilities in binary
code [77]. In contrast to symbolic execution, fuzzing scales
well to large software projects. As such, fuzzing would po-
tentially allow analysis of large and complex enclave binaries
to tackle the general problem of path explosion. On the other
hand, applying fuzzing to SGX enclaves is not straightfor-
ward: (1) To ensure efficiency, fuzzing requires a sophisticated
mutation strategy. However, mutation for the complex ECALL
interface requires significant engineering effort. (2) Fuzzing
relies on dynamic analysis tools to instrument binaries [9, 51],
which are currently not available for SGX enclaves. In partic-
ular, integrating dynamic analysis tools is highly challenging
when analyzing proprietary enclave binaries. Note that the
protection mechanisms provided by SGX impede dynamic
binary instrumentation. Further, static binary instrumentation
often fails to accurately rewrite binaries. Consequently, we
decided to rely on symbolic execution as it allows us to fully
control the simulated environment. Further, it comes with ad-
ditional flexibility significantly simplifying implementation
and integration of symbolic vulnerability detectors. However,
enabling hybrid fuzzing/concolic execution in TEEREX is
worthwhile investigating for future work.

8 Related Work

The security research on privilege separation lead to system
architectures that separate user from kernel space. However,
several kernel vulnerabilities bypassed this separation sim-
ply because the kernel is not strictly separated from user
space [14, 19, 28, 29, 45]. As a response, CPU vendors intro-
duced hardware-based mitigation mechanisms, such as SMAP
or SMEP [39], to enforce stricter separation. In fact, there are
many parallels between the user/kernel space interface and
the SGX host-to-enclave interface. That is, a higher privi-
leged partition (the enclave) must carefully parse and validate
any data that is written by the untrusted partition (the host
application).

Prior work in this area introduced mechanism allowing a
user space program to reliably execute in the presence of a
compromised operating system [16, 50, 54, 59]. However,
Checkoway et al. [13] have shown that existing legacy soft-
ware cannot be simply retrofitted to such environments mainly

because many kernel and operating system APIs implicitly
assume that the kernel is the most trusted part of the system,
e.g., in the threat model of a traditional Unix-like system the
kernel is assumed to have full control over the code and data
areas of any user space process. As such, existing software,
such as most implementations of the C standard library, lack
any validation of data passed from the kernel. So-called Iago
attacks exploit this fact and show that a malicious kernel can
easily corrupt memory of a user space process by returning
bogus arguments from system calls. As we show in this paper,
very similar issues apply to SGX enclaves; especially when
legacy code is retrofitted to run inside SGX enclaves.

Hu et al. [36] showed that any software that is separated
into equally-privileged but mutually untrusted partitions can
be vulnerable to similar attacks. They presented an approach
based on taint tracking and constraint solving to detect arbi-
trary write and possible TOCTOU vulnerabilities for a limited
number of execution paths. In contrast, TEEREX utilizes full
symbolic execution to identify arbitrary write primitives. Fur-
thermore, TEEREX also discovers control-flow hijacking and
NULL-pointer dereferences. TEEREX’ analysis also includes
scenarios, where the exploit depends on the global state of
the target.

Recently, Van Bulck et al. [69] presented a security analy-
sis of several TEE SDKs, whereas we focus on analyzing
enclaves. They identified vulnerabilities in TEE SDKs using
only manual code review. In contrast, we introduce an auto-
mated vulnerability detection framework for SGX enclave
binaries, which additionally assists an analyst in assessing the
vulnerability and constructing an exploit.

Many Android phones using ARM processors utilize the
TrustZone trusted execution environment (TEE) to protect
critical software. In contrast to SGX, TrustZone splits all
privilege levels into a trusted and untrusted world, where the
trusted OS has the highest privilege on the system. Machiry
et al. [52] analyzed the attack surface of the privilege bound-
ary between normal world and TEE. They identified a class
of vulnerabilities caused by to the semantic gap between nor-
mal world and TEE. They allow unprivileged, untrusted user
space applications (e.g., a sandboxed Android app) to abuse
the TEE to compromise the normal OS (the Linux kernel).
This type of vulnerability does not apply to SGX as enclaves
have little privileges and are prohibited to interact with the
OS. Harrison et al. [31] implemented a fuzzer based on full-
system emulation of the TrustZone TEE including the trusted
OS and trusted applications. The main challenge for analyz-
ing ARM-based TEEs is the fact that a custom trusted OS,
including required hardware, must be emulated. In contrast,
SGX enclaves generally lack direct hardware access. Further,
as discussed in Section 7, symbolic execution offers several
advantages over fuzzing when analyzing SGX enclaves.



9 Conclusion

Intel SGX is a promising security technology to strongly
isolate sensitive code and data into enclaves. However, im-
plementing the host-to-enclave boundary securely is highly
critical as the enclave processes and operates on input orig-
inating from untrusted memory space. To allow thorough
security testing of this interface, we perform a systematic
investigation on publicly available SGX enclaves. A major
contribution of this paper is to introduce an automated analy-
sis approach to determine vulnerabilities in enclaves. To do
so, our approach develops a sophisticated symbolic execution
framework that is able to analyze enclave binaries and pro-
duce detailed vulnerability reports to significantly simplify the
construction of proof-of-concept (PoC) exploits. Our findings
on public enclaves reveal vulnerabilities in two fingerprint
drivers (by Synaptics and by Goodix), three TLS libraries,
and a project published by Intel. For each, we constructed
PoC exploits to confirm the severity of the vulnerability and
perform control-flow hijacking allowing an attacker to subvert
any confidentiality or integrity guarantees offered by the SGX
enclaves. We analyzed the root causes of the vulnerabilities
and identified vulnerability patterns that likely also affect pri-
vately deployed enclaves. Addressing our findings is crucial
to allow secure deployment of SGX enclaves.

Acknowledgment

We would like to thank the affected vendors, Intel, Baidu,
WolfSSL, Synaptics, Goodix, and the enclave developers for
promptly acting upon our reports and developing patches.
Furthermore, we especially thank our shepherd, Nathan Daut-
enhahn, for helping us to improve this work. Funded by the
Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy - EXC
2092 CASA - 390781972 and under SFB 1119 – 236615297.

References
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti.

“Control-flow integrity principles, implementations, and applications”.
In: ACM Trans. Inf. Syst. Secur. 13.1 (2009). DOI: 10.1145/1609956.
1609960.

[2] Pierre-Louis Aublin, Florian Kelbert, Dan O’Keeffe, Divya Muthuku-
maran, Christian Priebe, Joshua Lind, Robert Krahn, Christof Fetzer,
David Eyers, and Peter Pietzuch. TaLoS: Secure and Transparent TLS
Termination inside SGX Enclaves. en. Tech. rep. 2017/5. Imperial
College London, Mar. 2017. URL: https://www.doc.ic.ac.uk/
research/technicalreports/2017/DTRS17-5.pdf.

[3] Thanassis Avgerinos, Sang Kil Cha, Brent Lim Tze Hao, and David
Brumley. “AEG: Automatic Exploit Generation”. In: Proceedings
of the Network and Distributed System Security Symposium, NDSS.
2011. URL: https://www.ndss-symposium.org/ndss2011/aeg-
automatic-exploit-generation.

[4] Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David
Brumley. “Enhancing symbolic execution with veritesting”. In: Com-
mun. ACM 59.6 (2016), pp. 93–100. DOI: 10.1145/2927924.

[5] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Deme-
trescu, and Irene Finocchi. “A Survey of Symbolic Execution Tech-
niques”. In: ACM Comput. Surv. 51.3 (May 2018). ISSN: 0360-0300.
DOI: 10.1145/3182657.

[6] Andrew Baumann, Marcus Peinado, and Galen C. Hunt. “Shielding
Applications from an Untrusted Cloud with Haven”. In: 11th USENIX
Symposium on Operating Systems Design and Implementation, OSDI.
2014. URL: https://www.usenix.org/conference/osdi14/
technical-sessions/presentation/baumann.

[7] Andrea Biondo, Mauro Conti, Lucas Davi, Tommaso Frassetto, and
Ahmad-Reza Sadeghi. “The Guard’s Dilemma: Efficient Code-Reuse
Attacks Against Intel SGX”. In: 27th USENIX Security Sympo-
sium, USENIX Security. 2018. URL: https://www.usenix.org/
conference/usenixsecurity18/presentation/biondo.

[8] Robert S Boyer, Bernard Elspas, and Karl N Levitt. “SELECT—
a formal system for testing and debugging programs by symbolic
execution”. In: ACM SigPlan Notices 10.6 (1975). URL: https :
//dl.acm.org/citation.cfm?id=808445.

[9] Bryan Buck and Jeffrey K Hollingsworth. “An API for Runtime Code
Patching”. In: Int. J. High Perform. Comput. Appl. 14.4 (Nov. 2000).
ISSN: 1094-3420. DOI: 10.1177/109434200001400404.

[10] Cristian Cadar, Daniel Dunbar, and Dawson R Engler. “KLEE: Unas-
sisted and Automatic Generation of High-Coverage Tests for Com-
plex Systems Programs”. In: 8th USENIX Symposium on Operat-
ing Systems Design and Implementation, OSDI. 2008. URL: http:
//www.usenix.org/events/osdi08/tech/full%5C_papers/
cadar/cadar.pdf.

[11] Nicholas Carlini and David Wagner. “ROP is Still Dangerous:
Breaking Modern Defenses”. In: 23rd USENIX Security Sympo-
sium, USENIX Security. 2014. URL: https : / / www . usenix .
org/conference/usenixsecurity14/technical- sessions/
presentation/carlini.

[12] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David
Brumley. “Unleashing Mayhem on Binary Code”. In: 2012 IEEE
Symposium on Security and Privacy. IEEE, May 2012. DOI: 10.
1109/SP.2012.31.

[13] Stephen Checkoway and Hovav Shacham. “Iago attacks: why the
system call API is a bad untrusted RPC interface”. In: ASPLOS.
Vol. 13. 2013. DOI: 10.1145/2499368.2451145.

[14] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou, Nickolai Zel-
dovich, and M Frans Kaashoek. “Linux Kernel Vulnerabilities: State-
of-the-art Defenses and Open Problems”. In: Proceedings of the
Second Asia-Pacific Workshop on Systems. APSys ’11. ACM, 2011.
DOI: 10.1145/2103799.2103805.

[15] Shuo Chen, Jun Xu, and Emre Can Sezer. “Non-Control-Data Attacks
Are Realistic Threats”. In: Proceedings of the 14th USENIX Security
Symposium. 2005. URL: https://www.usenix.org/conference/
14th - usenix - security - symposium / non - control - data -
attacks-are-realistic-threats.

[16] Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis, Pratap Subrah-
manyam, Carl A. Waldspurger, Dan Boneh, Jeffrey S. Dwoskin, and
Dan R. K. Ports. “Overshadow: a virtualization-based approach to
retrofitting protection in commodity operating systems”. In: Proceed-
ings of the 13th International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS. 2008.
DOI: 10.1145/1346281.1346284.

[17] James A. Clause, Wanchun Li, and Alessandro Orso. “Dytan: a
generic dynamic taint analysis framework”. In: Proceedings of the
ACM/SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA. 2007. DOI: 10.1145/1273463.1273490.

[18] Victor Costan and Srinivas Devadas. “Intel SGX Explained”. In:
(2016). URL: https://eprint.iacr.org/2016/086.

https://doi.org/10.1145/1609956.1609960
https://doi.org/10.1145/1609956.1609960
https://www.doc.ic.ac.uk/research/technicalreports/2017/DTRS17-5.pdf
https://www.doc.ic.ac.uk/research/technicalreports/2017/DTRS17-5.pdf
https://www.ndss-symposium.org/ndss2011/aeg-automatic-exploit-generation
https://www.ndss-symposium.org/ndss2011/aeg-automatic-exploit-generation
https://doi.org/10.1145/2927924
https://doi.org/10.1145/3182657
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/baumann
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/baumann
https://www.usenix.org/conference/usenixsecurity18/presentation/biondo
https://www.usenix.org/conference/usenixsecurity18/presentation/biondo
https://dl.acm.org/citation.cfm?id=808445
https://dl.acm.org/citation.cfm?id=808445
https://doi.org/10.1177/109434200001400404
http://www.usenix.org/events/osdi08/tech/full%5C_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full%5C_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full%5C_papers/cadar/cadar.pdf
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/carlini
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/carlini
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/carlini
https://doi.org/10.1109/SP.2012.31
https://doi.org/10.1109/SP.2012.31
https://doi.org/10.1145/2499368.2451145
https://doi.org/10.1145/2103799.2103805
https://www.usenix.org/conference/14th-usenix-security-symposium/non-control-data-attacks-are-realistic-threats
https://www.usenix.org/conference/14th-usenix-security-symposium/non-control-data-attacks-are-realistic-threats
https://www.usenix.org/conference/14th-usenix-security-symposium/non-control-data-attacks-are-realistic-threats
https://doi.org/10.1145/1346281.1346284
https://doi.org/10.1145/1273463.1273490
https://eprint.iacr.org/2016/086


[19] Mark Cox. Red Hat’s Top 11 Most Serious Flaw Types for 2009. Feb.
2010. URL: https://awe.com/mark/blog/20100216.html.

[20] CVE-2019-18619. July 2020. URL: https://cve.mitre.org/cgi-
bin/cvename.cgi?name=2019-18619 (visited on 07/16/2020).

[21] CVE-2020-11667. July 2020. URL: https://cve.mitre.org/
cgi - bin / cvename . cgi ? name = CVE - 2020 - 11667 (visited on
07/16/2020).

[22] CyberLink. PowerDVD Ultra Requirements. URL: https://www.
cyberlink.com/products/powerdvd-ultra/spec_en_US.html
(visited on 11/14/2019).

[23] Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian
Monrose. “Stitching the Gadgets: On the Ineffectiveness of Coarse-
Grained Control-Flow Integrity Protection”. In: Proceedings of the
23rd USENIX Security Symposium, USENIX Security. 2014. URL:
https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/davi.

[24] Dell. DSA-2020-138: Dell Client Platform Security Update for
Goodix Fingerprint Sensor Driver Vulnerability. July 2020. URL:
https://www.dell.com/support/article/de-de/SLN321807
(visited on 07/16/2020).

[25] Ran Duan, Long Li, Shi Jia, Yu Ding, Yulong Zhang, Yueqiang Cheng,
Lenx Wei, and Tanghui Chen. Apache Teaclave Rust-SGX SDK -
Samplecode “tls/tlsclient”. URL: https://github.com/apache/
incubator- teaclave- sgx- sdk/tree/master/samplecode/
tls/tlsclient (visited on 02/28/2020).

[26] Tyler Durden. “Bypassing PaX ASLR protection”. In: Phrack Maga-
zine 59.9 (2002). URL: http://phrack.org/issues/59/9.html.

[27] Efficient TLS termination inside Intel SGX enclaves for existing ap-
plications: lsds/TaLoS. Aug. 7, 2019. URL: https://github.com/
lsds/TaLoS (visited on 08/27/2019).

[28] Przemyslaw Frasunek. Full Disclosure Mailing List Archives:
FreeBSD 7.0 - 7.2 pseudofs null pointer dereference. Sept. 2010.
URL: https://seclists.org/fulldisclosure/2010/Sep/107
(visited on 11/13/2019).

[29] David Gens, Simon Schmitt, Lucas Davi, and Ahmad-Reza Sadeghi.
“K-Miner: Uncovering Memory Corruption in Linux”. In: Proceed-
ings 2018 Network and Distributed System Security Symposium,
NDSS. 2018. DOI: 10.14722/ndss.2018.23326.

[30] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and Georgios Por-
tokalidis. “Out of Control: Overcoming Control-Flow Integrity”. In:
2014 IEEE Symposium on Security and Privacy, S&P. 2014. DOI:
10.1109/SP.2014.43.

[31] Lee Harrison, Hayawardh Vijayakumar, Rohan Padhye, Koushik Sen,
Michael Grace, Rohan Padhye, Caroline Lemieux, Koushik Sen, Lau-
rent Simon, Hayawardh Vijayakumar, et al. “PARTEMU: Enabling
Dynamic Analysis of Real-World TrustZone Software Using Emu-
lation”. In: Proceedings of the 29th USENIX Security Symposium
(USENIX Security 2020) (To Appear). 2020. URL: https://www.
usenix.org/conference/usenixsecurity20/presentation/
harrison.

[32] Sean Heelan, Tom Melham, and Daniel Kroening. “Gollum: Modular
and Greybox Exploit Generation for Heap Overflows in Interpreters”.
In: Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, CCS. 2019. DOI: 10.1145/3319535.
3354224.

[33] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade,
and Juan del Cuvillo. “Using innovative instructions to create trust-
worthy software solutions”. In: The Second Workshop on Hardware
and Architectural Support for Security and Privacy, HASP. 2013. DOI:
10.1145/2487726.2488370.

[34] HP. HPSBHF03675 rev. 1 - Synaptics Fingerprint Drivers that use
SGX. July 2020. URL: https : / / support . hp . com / hk - en /
document/c06696568 (visited on 07/16/2020).

[35] Hong Hu, Zheng Leong Chua, Sendroiu Adrian, Prateek Saxena, and
Zhenkai Liang. “Automatic Generation of Data-Oriented Exploits”.
In: 24th USENIX Security Symposium, USENIX Security. 2015. URL:
https://www.usenix.org/conference/usenixsecurity15/
technical-sessions/presentation/hu.

[36] Hong Hu, Zheng Leong Chua, Zhenkai Liang, and Prateek Saxena.
“Identifying Arbitrary Memory Access Vulnerabilities in Privilege-
Separated Software”. In: Computer Security - 20th European Sym-
posium on Research in Computer Security, Proceedings, Part II, ES-
ORICS. 2015. DOI: 10.1007/978-3-319-24177-7_16.

[37] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Pra-
teek Saxena, and Zhenkai Liang. “Data-Oriented Programming: On
the Expressiveness of Non-control Data Attacks”. In: IEEE Sympo-
sium on Security and Privacy, S&P. 2016. DOI: 10.1109/SP.2016.
62.

[38] Intel. Demo Programs for the GNU* Multiple Precision Arithmetic
Library* for Intel R© Software Guard Extensions. URL: https://
github.com/intel/sgx-gmp-demo/ (visited on 10/10/2019).

[39] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual,
Combined Volumes 3 (3A, 3B, and 3C): System Programming Guide.
2019. URL: https://software.intel.com/sites/default/
files/managed/a4/60/325384-sdm-vol-3abcd.pdf.

[40] Intel. Intel R© Software Guard Extensions SDK for Linux*. URL:
https://01.org/intel- software- guard- extensions (vis-
ited on 08/20/2019).

[41] Intel R© 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3D: System Programming Guide, Part 4. Order Number
332831-065US. Intel. Dec. 2017.

[42] Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias
Payer. “Block Oriented Programming: Automating Data-Only At-
tacks”. In: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS. 2018. DOI: 10.1145/
3243734.3243739.

[43] Todd Jackson, Babak Salamat, Andrei Homescu, Karthikeyan Mani-
vannan, Gregor Wagner, Andreas Gal, Stefan Brunthaler, Christian
Wimmer, and Michael Franz. “Compiler-Generated Software Diver-
sity”. In: Moving Target Defense. Vol. 54. Advances in Information
Security. 2011. DOI: 10.1007/978-1-4614-0977-9_4.

[44] Simon Johnson. Intel R© SGX and Side-Channels. Feb. 2018. URL:
https://software.intel.com/en-us/articles/intel-sgx-
and-side-channels (visited on 10/10/2019).

[45] Vasileios P. Kemerlis, Georgios Portokalidis, and Angelos D.
Keromytis. “kGuard: Lightweight Kernel Protection against Return-
to-User Attacks”. In: Proceedings of the 21th USENIX Security Sym-
posium. 2012. URL: https://www.usenix.org/conference/
usenixsecurity12 / technical - sessions / presentation /
kemerlis.

[46] James C King. “Symbolic execution and program testing”. In: Com-
mun. ACM 19.7 (July 1976). ISSN: 0001-0782. DOI: 10 . 1145 /
360248.360252.

[47] Per Larsen, Andrei Homescu, Stefan Brunthaler, and Michael Franz.
“SoK: Automated Software Diversity”. In: Proceedings of the 35th
IEEE Symposium on Security and Privacy. 2014. DOI: 10.1109/SP.
2014.25.

[48] Jae-Hyuk Lee, Jin Soo Jang, Yeongjin Jang, Nohyun Kwak, Yeseul
Choi, Changho Choi, Taesoo Kim, Marcus Peinado, and Brent
ByungHoon Kang. “Hacking in Darkness: Return-oriented Program-
ming against Secure Enclaves”. In: 26th USENIX Security Sym-
posium, USENIX Security. 2017. URL: https : / / www . usenix .
org/conference/usenixsecurity17/technical- sessions/
presentation/lee-jaehyuk.

https://awe.com/mark/blog/20100216.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2019-18619
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2019-18619
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11667
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11667
https://www.cyberlink.com/products/powerdvd-ultra/spec_en_US.html
https://www.cyberlink.com/products/powerdvd-ultra/spec_en_US.html
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/davi
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/davi
https://www.dell.com/support/article/de-de/SLN321807
https://github.com/apache/incubator-teaclave-sgx-sdk/tree/master/samplecode/tls/tlsclient
https://github.com/apache/incubator-teaclave-sgx-sdk/tree/master/samplecode/tls/tlsclient
https://github.com/apache/incubator-teaclave-sgx-sdk/tree/master/samplecode/tls/tlsclient
http://phrack.org/issues/59/9.html
https://github.com/lsds/TaLoS
https://github.com/lsds/TaLoS
https://seclists.org/fulldisclosure/2010/Sep/107
https://doi.org/10.14722/ndss.2018.23326
https://doi.org/10.1109/SP.2014.43
https://www.usenix.org/conference/usenixsecurity20/presentation/harrison
https://www.usenix.org/conference/usenixsecurity20/presentation/harrison
https://www.usenix.org/conference/usenixsecurity20/presentation/harrison
https://doi.org/10.1145/3319535.3354224
https://doi.org/10.1145/3319535.3354224
https://doi.org/10.1145/2487726.2488370
https://support.hp.com/hk-en/document/c06696568
https://support.hp.com/hk-en/document/c06696568
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/hu
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/hu
https://doi.org/10.1007/978-3-319-24177-7_16
https://doi.org/10.1109/SP.2016.62
https://doi.org/10.1109/SP.2016.62
https://github.com/intel/sgx-gmp-demo/
https://github.com/intel/sgx-gmp-demo/
https://software.intel.com/sites/default/files/managed/a4/60/325384-sdm-vol-3abcd.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325384-sdm-vol-3abcd.pdf
https://01.org/intel-software-guard-extensions
https://doi.org/10.1145/3243734.3243739
https://doi.org/10.1145/3243734.3243739
https://doi.org/10.1007/978-1-4614-0977-9_4
https://software.intel.com/en-us/articles/intel-sgx-and-side-channels
https://software.intel.com/en-us/articles/intel-sgx-and-side-channels
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/kemerlis
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/kemerlis
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/kemerlis
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.1109/SP.2014.25
https://doi.org/10.1109/SP.2014.25
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk


[49] Lenovo. Lenovo Security Advisory: LEN-31372. July 2020. URL:
https://support.lenovo.com/de/en/product_security/
len-31372 (visited on 07/16/2020).

[50] David Lie, Chandramohan A. Thekkath, and Mark Horowitz. “Im-
plementing an untrusted operating system on trusted hardware”. In:
Proceedings of the 19th ACM Symposium on Operating Systems Prin-
ciples 2003, SOSP. 2003. DOI: 10.1145/945445.945463.

[51] Chi-Keung Luk, Robert S. Cohn, Robert Muth, Harish Patil, Artur
Klauser, P. Geoffrey Lowney, Steven Wallace, Vijay Janapa Reddi,
and Kim M. Hazelwood. “Pin: building customized program analysis
tools with dynamic instrumentation”. In: Proceedings of the ACM
SIGPLAN 2005 Conference on Programming Language Design and
Implementation. 2005. DOI: 10.1145/1065010.1065034.

[52] Aravind Machiry, Eric Gustafson, Chad Spensky, Christopher Salls,
Nick Stephens, Ruoyu Wang, Antonio Bianchi, Yung Ryn Choe,
Christopher Kruegel, and Giovanni Vigna. “BOOMERANG: Exploit-
ing the Semantic Gap in Trusted Execution Environments”. In: 24th
Annual Network and Distributed System Security Symposium, NDSS.
2017. DOI: 10.14722/ndss.2017.23227.

[53] Moxie Marlinspike. Technology preview: Private contact discovery
for Signal. Sept. 26, 2017. URL: https://signal.org/blog/
private-contact-discovery/ (visited on 10/10/2019).

[54] Jonathan M McCune, Bryan J Parno, Adrian Perrig, Michael K Reiter,
and Hiroshi Isozaki. “Flicker: An execution infrastructure for TCB
minimization”. In: ACM SIGOPS Operating Systems Review. Vol. 42.
4. ACM. 2008. DOI: 10.1145/1357010.1352625.

[55] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas,
Hisham Shafi, Vedvyas Shanbhogue, and Uday R. Savagaonkar. “In-
novative instructions and software model for isolated execution”. In:
The Second Workshop on Hardware and Architectural Support for Se-
curity and Privacy, HASP. 2013. DOI: 10.1145/2487726.2488368.

[56] Microsoft. Data Execution Prevention (DEP). 2006. URL: http:
//support.microsoft.com/kb/875352/EN-US/.

[57] PaX Team. PaX: PAGEEXEC Design. URL: https : / / pax .
grsecurity.net/docs/pageexec.txt (visited on 08/23/2019).

[58] Jannik Pewny, Philipp Koppe, and Thorsten Holz. “STEROIDS for
DOPed Applications: A Compiler for Automated Data-Oriented Pro-
gramming”. In: IEEE European Symposium on Security and Privacy,
EuroS&P. 2019. DOI: 10.1109/EuroSP.2019.00018.

[59] Dan R. K. Ports and Tal Garfinkel. “Towards Application Security
on Untrusted Operating Systems”. In: 3rd USENIX Workshop on Hot
Topics in Security, HotSec. 2008. URL: http://www.usenix.org/
events/hotsec08/tech/full%5C_papers/ports/ports.pdf.

[60] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis,
Marcus Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. “VC3:
Trustworthy Data Analytics in the Cloud Using SGX”. In: 2015 IEEE
Symposium on Security and Privacy, S&P. 2015. DOI: 10.1109/SP.
2015.10.

[61] Jaebaek Seo, Byoungyoung Lee, Seong Min Kim, Ming-Wei Shih,
Insik Shin, Dongsu Han, and Taesoo Kim. “SGX-Shield: Enabling
Address Space Layout Randomization for SGX Programs”. In: 24th
Annual Network and Distributed System Security Symposium, NDSS.
2017. DOI: 10.14722/ndss.2017.23037.

[62] Hovav Shacham. “The geometry of innocent flesh on the bone: return-
into-libc without function calls (on the x86)”. In: Proceedings of the
2007 ACM Conference on Computer and Communications Security,
CCS. 2007. DOI: 10.1145/1315245.1315313.

[63] Yan Shoshitaishvili et al. “SOK: (State of) The Art of War: Offensive
Techniques in Binary Analysis”. In: IEEE Symposium on Security
and Privacy, S&P. 2016. DOI: 10.1109/SP.2016.17.

[64] Kevin Z. Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko,
Christopher Liebchen, and Ahmad-Reza Sadeghi. “Just-In-Time Code
Reuse: On the Effectiveness of Fine-Grained Address Space Layout
Randomization”. In: Proceedings of the 34th IEEE Symposium on
Security and Privacy, S&P. 2013. DOI: 10.1109/SP.2013.45.

[65] Synaptics. Synaptics Security Advisory: Synaptics Fingerprint
Drivers that use SGX. July 2020. URL: https://www.synaptics.
com / sites / default / files / fingerprint - driver - SGX -
security-brief-2020-07-14.pdf (visited on 07/16/2020).

[66] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. “SoK:
Eternal War in Memory”. In: 2013 IEEE Symposium on Security and
Privacy, S&P. 2013. DOI: 10.1109/SP.2013.13.

[67] Chia-che Tsai, Donald E. Porter, and Mona Vij. “Graphene-SGX: A
Practical Library OS for Unmodified Applications on SGX”. In: 2017
USENIX Annual Technical Conference, USENIX ATC. 2017. URL:
https://www.usenix.org/conference/atc17/technical-
sessions/presentation/tsai.

[68] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F Wenisch, Yu-
val Yarom, and Raoul Strackx. “Foreshadow: Extracting the keys to
the intel SGX kingdom with transient out-of-order execution”. In:
27th USENIX Security Symposium, USENIX Security. 2018. URL:
https://www.usenix.org/conference/usenixsecurity18/
presentation/bulck.

[69] Jo Van Bulck, David Oswald, Eduard Marin, Abdulla Aldoseri, Flavio
D Garcia, and Frank Piessens. “A Tale of Two Worlds: Assessing the
Vulnerability of Enclave Shielding Runtimes”. In: Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications
Security, CCS. 2019. DOI: 10.1145/3319535.3363206.

[70] Jo Van Bulck, Frank Piessens, and Raoul Strackx. “SGX-Step: A
Practical Attack Framework for Precise Enclave Execution Control”.
In: Proceedings of the 2Nd Workshop on System Software for Trusted
Execution, SysTEX. 2017. DOI: 10.1145/3152701.3152706.

[71] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and
Raoul Strackx. “Telling Your Secrets without Page Faults: Stealthy
Page Table-Based Attacks on Enclaved Execution”. In: 26th USENIX
Security Symposium, USENIX Security. 2017. URL: https : / /
www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/van-bulck.

[72] Victor van der Veen, Dennis Andriesse, Manolis Stamatogiannakis, Xi
Chen, Herbert Bos, and Cristiano Giuffrida. “The Dynamics of Inno-
cent Flesh on the Bone: Code Reuse Ten Years Later”. In: Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS. 2017. DOI: 10.1145/3133956.3134026.

[73] Huibo Wang, Pei Wang, Yu Ding, Mingshen Sun, Yiming Jing, Ran
Duan, Long Li, Yulong Zhang, Tao Wei, and Zhiqiang Lin. “Towards
Memory Safe Enclave Programming with Rust-SGX”. In: Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS. 2019. DOI: 10.1145/3319535.3354241.

[74] wolfSSL Linux Enclave Example. URL: https://github.com/
wolfSSL/wolfssl-examples/tree/master/SGX_Linux (visited
on 10/10/2019).

[75] wolfSSL: a small, fast, portable implementation of TLS/SSL for em-
bedded devices to the cloud. Oct. 10, 2019. URL: https://github.
com/wolfSSL/wolfssl (visited on 08/27/2019).

[76] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. “Controlled-
Channel Attacks: Deterministic Side Channels for Untrusted Op-
erating Systems”. In: 2015 IEEE Symposium on Security and Privacy,
S&P. 2015. DOI: 10.1109/SP.2015.45.

[77] Michal Zalewski. American Fuzzing Lop (AFL). 2019. URL: http:
//lcamtuf.coredump.cx/afl/ (visited on 11/13/2019).

https://support.lenovo.com/de/en/product_security/len-31372
https://support.lenovo.com/de/en/product_security/len-31372
https://doi.org/10.1145/945445.945463
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.14722/ndss.2017.23227
https://signal.org/blog/private-contact-discovery/
https://signal.org/blog/private-contact-discovery/
https://doi.org/10.1145/1357010.1352625
https://doi.org/10.1145/2487726.2488368
http://support.microsoft.com/kb/875352/EN-US/
http://support.microsoft.com/kb/875352/EN-US/
https://pax.grsecurity.net/docs/pageexec.txt
https://pax.grsecurity.net/docs/pageexec.txt
https://doi.org/10.1109/EuroSP.2019.00018
http://www.usenix.org/events/hotsec08/tech/full%5C_papers/ports/ports.pdf
http://www.usenix.org/events/hotsec08/tech/full%5C_papers/ports/ports.pdf
https://doi.org/10.1109/SP.2015.10
https://doi.org/10.1109/SP.2015.10
https://doi.org/10.14722/ndss.2017.23037
https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1109/SP.2013.45
https://www.synaptics.com/sites/default/files/fingerprint-driver-SGX-security-brief-2020-07-14.pdf
https://www.synaptics.com/sites/default/files/fingerprint-driver-SGX-security-brief-2020-07-14.pdf
https://www.synaptics.com/sites/default/files/fingerprint-driver-SGX-security-brief-2020-07-14.pdf
https://doi.org/10.1109/SP.2013.13
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://doi.org/10.1145/3319535.3363206
https://doi.org/10.1145/3152701.3152706
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/van-bulck
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/van-bulck
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/van-bulck
https://doi.org/10.1145/3133956.3134026
https://doi.org/10.1145/3319535.3354241
https://github.com/wolfSSL/wolfssl-examples/tree/master/SGX_Linux
https://github.com/wolfSSL/wolfssl-examples/tree/master/SGX_Linux
https://github.com/wolfSSL/wolfssl
https://github.com/wolfSSL/wolfssl
https://doi.org/10.1109/SP.2015.45
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

	Introduction
	Memory Corruption in SGX
	SGX Preliminaries
	Host-Enclave Interface
	The EDL Interface Specifications

	TeeRex Symbolic Enclave Analyzer
	Architecture
	Challenges
	Vulnerability Detection Components

	Enclave Analysis Results
	Intel GMP Example
	WolfSSL Example Enclave
	Rust SGX SDK's tlsclient/server
	TaLoS
	Synaptics SynaTEE Driver
	Goodix Fingerprint Driver
	Vulnerability Disclosure

	Performance and Accuracy
	Performance and Memory Usage
	Accuracy and False Alarms

	Discussion
	Related Work
	Conclusion

