
RiscyROP: Automated Return-Oriented Programming Attacks on
RISC-V and ARM64

Tobias Cloosters

tobias.cloosters@uni-due.de

University of Duisburg-Essen

Essen, Germany

David Paaßen

david.paassen@uni-due.de

University of Duisburg-Essen

Essen, Germany

Jianqiang Wang

jianqiang.wang@trust.tu-darmstadt.de

Technical University of Darmstadt

Darmstadt, Germany

Oussama Draissi

oussama.draissi@uni-due.de

University of Duisburg-Essen

Essen, Germany

Patrick Jauernig

patrick.jauernig@sanctuary.dev

Technical University of Darmstadt

Darmstadt, Germany

Emmanuel Stapf

emmanuel.stapf@sanctuary.dev

Technical University of Darmstadt

Darmstadt, Germany

Lucas Davi

lucas.davi@uni-due.de

University of Duisburg-Essen

Essen, Germany

Ahmad Sadeghi

ahmad.sadeghi@trust.tu-darmstadt.de

Technical University of Darmstadt

Darmstadt, Germany

ABSTRACT

Return-oriented programming (ROP) is a powerful run-time ex-

ploitation technique to attack vulnerable software. Modern RISC

architectures like RISC-V and ARM64 pose new challenges for ROP

execution due to the lack of a stack-based return instruction and

strict instruction alignment. Further, the large number of caller-

saved argument registers significantly reduces the gadget space

available to the attacker. Consequently, existing ROP gadget tools

for other processor architectures cannot be applied to these RISC

architectures. Previous work on RISC-V provides only manual con-

struction of ROP attacks against specially crafted programs, and

no analysis of ROP attacks has been conducted for ARM64 yet.

In this paper, we address these challenges and present Riscy-

ROP, the first automated ROP gadget finding and chaining toolkit

for RISC-V and ARM64. RiscyROP analyzes available gadgets uti-

lizing symbolic execution, and automatically generates complex

multi-stage chains to conduct arbitrary function calls. Our ap-

proach enables the first investigation of the gadget space on RISC-V

and ARM64 real-world binaries. RiscyROP successfully builds ROP

chains that enable an attacker to execute arbitrary function calls

for the nginx web server as well as any binary that contains the

libc library.

CCS CONCEPTS

• Security and privacy → Systems security; Mobile platform
security; Vulnerability scanners.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

RAID 2022, October 26–28, 2022, Limassol, Cyprus
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9704-9/22/10. . . $15.00

https://doi.org/10.1145/3545948.3545997

KEYWORDS

RISC-V, ARM64, Return-Oriented Programming, Symbolic Execu-

tion, Exploitation

ACM Reference Format:

Tobias Cloosters, David Paaßen, Jianqiang Wang, Oussama Draissi, Patrick

Jauernig, Emmanuel Stapf, Lucas Davi, and Ahmad Sadeghi. 2022. Riscy-

ROP: Automated Return-Oriented Programming Attacks on RISC-V and

ARM64. In 25th International Symposium on Research in Attacks, Intrusions
and Defenses (RAID 2022), October 26–28, 2022, Limassol, Cyprus. ACM, New

York, NY, USA, 14 pages. https://doi.org/10.1145/3545948.3545997

1 INTRODUCTION

Return-oriented programming (ROP) [40] is a state-of-the-art attack

exploitation technique to hijack modern software running on vari-

ous architectures. As ROP only leverages existing benign code, it

circumvents classic protection mechanisms such as non-executable

data memory [45]. After exploiting a memory corruption error, a

ROP attack executes a set of short code snippets (gadgets) to induce

arbitrary malicious behavior and invoke arbitrary functions. The

key part of ROP attacks is a stack-based return instruction, which

dispatches execution from one gadget to the next gadget.

ROP attacks have been discussed extensively in academic litera-

ture [40, 19, 8, 43, 4, 42, 15, 7, 38] and several automated gadget tools

as well as defenses have been proposed [45, 14, 33, 49]. On x86, the

gadget space is significantly larger compared to RISC architectures

because unaligned memory access produces many unintentional
instruction sequences. Existing tools to automate ROP attacks on

x86, such as Q [39], commonly utilize implementations based on the

well-knownGalileo algorithm, originally proposed by Shacham [40].

The Galileo algorithm searches for byte sequences reassembling a

return instruction and analyzes the preceding bytes for valid (and

useful) instructions. Even though Galileo-based algorithms have

been used with great success to attack programs, this algorithm is

unable to detect all types of gadgets on modern architectures such

as RISC-V [24] (see Section 5). Hence, by utilizing existing tools, we

may underestimate the capabilities of an attacker when analyzing a

compiled binary for ROP gadgets. Nevertheless, RISC architectures

https://doi.org/10.1145/3545948.3545997
https://doi.org/10.1145/3545948.3545997

RAID 2022, October 26–28, 2022, Limassol, Cyprus Cloosters et al.

x86 x86_64 ARM32 RISC-V ARM64

1 Writable Program Counter

2 Stack-return Instruction

3 Max. Arguments in Registers 0 4–6 4 8 8

3 Mixed-purpose Registers

4 Instruction Alignment 1 1 4/2 4/2 4

5 Short Function Epilogue

Table 1: Properties and conventions of different architectures

that pose challenges for return-oriented programming. The

dot () indicates the presence of a property that is beneficial

for return-oriented programming.

such as SPARC and ARM32 are similarly vulnerable to ROP attacks

(though a smaller gadget space is available) because similar to x86

function return instructions can be exploited to chain gadgets [5,

8].

However, it is not yet clear to which extent ROP attacks are

applicable to recent processor architectures such as ARM64 and

RISC-V. ARM64 is widely used, e.g., in newer iOS devices from Ap-

ple, and RISC-V is a promising open source processor architecture

that is gaining more and more traction. It is used in mobile devices,

for example as a security chip in Google’s Android phones [20] as

well as in various products by Western Digital [30]. To our surprise,

there is no thorough investigation whether real-world software

executing on these modern architectures is susceptible to ROP. Due

to the differences to existing architectures such as x86 and ARM32,

ARM64 and RISC-V pose new challenges for ROP attacks. As we

will elaborate in detail in Section 3, a number of architectural dif-

ferences (cf. Table 1) make determining ROP gadgets challenging

on these architectures: 1 The program counter (pc) register is not
a general-purpose register (unlike ARM32), 2 there does not exist

a stack-based return instruction, which is a key building block for

ROP on x86 and ARM32, 3 arguments to functions are passed

via (dedicated) processor registers instead of the stack, 4 mem-

ory alignment prevents execution of unintended sequences, and

5 function epilogue sequences introduce side effects by executing

several instructions between loading a return address from the

stack and actually using it for a control-flow transfer. These design

features in combination severely limit the capabilities of an attacker

as the only option available to the attacker is jump-oriented pro-

gramming [4], which leverages sequences ending in indirect calls

and jumps. While jump-oriented programming attacks have been

demonstrated on x86 and ARM32 [8], they require a tedious man-

ual gadget search. The result is, that—for both architectures—there

remain only two major sources of gadgets: function epilogues and

sequences ending in indirect jumps. The former is hardly usable

for calling arbitrary functions as they rarely set registers which

contain the function parameters. In contrast, the latter typically set

function arguments in registers but do not read any data from the

stack, i.e., they load arguments based on other registers. On top of

all these challenges, we will empirically show that gadgets on these

architectures are significantly longer and more complex compared

to the convenient stack-based return sequences known from x86

and ARM32. In particular, the majority of gadgets on RISC-V and

ARM64 introduce various side effects (i.e., changing many register

values) which makes manual ROP-chaining highly challenging as

useful gadgets are easily missed or deemed not useful when in real-

ity they could be part of a ROP chain. Thus, we need to develop a

new analysis approach to address the peculiarities of modern RISC

architectures as existing tools cannot simply be re-purposed for

ARM64 and RISC-V.

In this paper, we present RiscyROP, a novel and automated analy-

sis approach that determines gadgets for ARM64 and RISC-V bina-

ries allowing accurate risk assessment regarding ROP attacks on

these architectures. Instead of a simple pattern search, our approach

is based on symbolic execution. This allows us to leverage gadgets

ending in any instruction that jumps to an attacker-controlled lo-

cation. Furthermore, the symbolic execution approach allows us

to easily collect path constraints to automatically exclude gadgets

chains that are impossible to execute in practice.We study the preva-

lence of useful gadgets on ARM64 as well as RISC-V. We compare

the results to traditional ROP gadget finders and demonstrate that

they are rarely able to find ROP gadgets to construct a (malicious)

function call on RISC applications.

In summary, we make the following contributions:

• We systematically analyze the complexity of finding gadgets

and building ROP gadget chains for RISC-V and ARM64

(Section 3).

• We propose RiscyROP, an automated ROP gadget finder and

chaining tool for RISC-V and ARM64 based on symbolic

execution that is able to find gadgets despite the limited

gadget space and increased complexity of resulting ROP

chains (Section 5).

• We analyze real-world software from public repositories

and show that RiscyROP is able to find gadgets to execute

attacker-controlled function calls.

• We also provide a detailed evaluation based on a real-world

ROP-based exploit using the popular nginx web server and

the C standard library libc (Section 6).

2 BACKGROUND

To better understand the challenges of executing arbitrary func-

tion calls via a ROP attack, we introduce the registers and calling

conventions of the RISC-V and ARM64 architectures.

2.1 RISC-V Architecture

RISC-V defines 31 general-purpose registers, which includes the

stack pointer sp and argument registers a0–a7. Further, there is a
constant zero register, 32 floating point registers and the program

counter (pc). For function calls, arguments are copied to a0–a7
prior to the jump to the destination. Calls are executed with the

jal/jalr instruction, which stores the return address in the ra
register. The function prologue on RISC-V decreases the sp register
to allocate stack memory for local variables and stores (sd) the
caller’s frame pointer inside the newly allocated stack frame. Then

the frame pointer (s0/fp) is adjusted to point to the new stack

frame and subsequently used to reference local variables. Used

callee-saved registers (s0–s11) are preserved in the stack frame.

Upon function completion, the return value is stored in a0, all callee-
saved registers are restored and sp is increased to reclaim the stack

memory. The callee returns by jumping to the address stored in ra.

RiscyROP: Automated Return-Oriented Programming Attacks on RISC-V and ARM64 RAID 2022, October 26–28, 2022, Limassol, Cyprus

When a callee itself calls functions, the value of ra is saved on the

stack prior to a nested function call.

2.2 ARM64 Architecture

ARM64 defines 31 general-purpose registers (x0–x30), 32 floating-
point registers, and a set of special registers including the zero

register, the program counter (pc) and the stack pointer (sp). The
lower 32 Bit of the general-purpose registers can be addressed using

w0–w30. On ARM64, the registers x0–x7 are used for arguments.

Functions are called using the bl instruction which stores the re-

turn address in the link register (lr) and then branches to the given

address. The function prologue of the callee saves the return ad-

dress (stored in lr), the frame pointer (fp), and the callee-saved

registers (x19–x28) on the stack; the registers x9–x15, which are

used for local variables, must be saved by the caller. Next, memory

for local variables is allocated by decreasing the stack pointer. Dur-

ing the function epilogue callee-saved registers are restored. Then,

return address and frame pointer are loaded from the stack and

the stack pointer is increased using a single load pair instruction
(ldp fr, lr, [sp], #0x50). Thereafter, the callee returns by

branching to the return address stored in the lr register (br lr).

3 CHALLENGES

In the following we discuss the unique challenges of ROP attack

on RISC-V and ARM64 in comparison to other architectures like

x86, which are summarized in Table 1. The combination of all the

described challenges is the reason that ROP attacks are so hard

to execute on these architectures. Due to its unique design and

utilization of symbolic execution, RiscyROP is able to solve the

problems posed by RISC-V as well as ARM64.

Stack-Based Returns. The x86 ret instruction gives return-orient-
ed programming its name as it dispatches execution to the gadget

referenced by the (malicious) return address from the stack. RISC

architectures commonly use a dedicated register to store the re-

turn address (ra/lr). However, for non-leaf functions (i.e., nested
function calls), it is still required to store return addresses on the

stack, which makes them potentially accessible to an attacker that

exploits a security vulnerability. On ARM32, a stack-based return

is usually implemented using pop pc which is—equivalent to the

x86 ret instruction—a stack-based return instruction. This is possi-

ble because the program counter pc is a general-purpose register,
writable by all instructions. However, on RISC-V and ARM64, the

program counter is protected and can only be modified by jump in-

structions. As a result, RISC-V applications use the load instruction

to restore ra at the beginning of the epilogue (ld ra,0x10(sp)),
and on ARM64 the load pair instruction is used to restore the link

register lr and frame pointer fp in one instruction directly before

jumping/returning to the caller (ldp fp, lr, [sp], #0x30; ret).
The main challenge is that we need to consider complex side

effects. In particular, between the loading of the return address

from the stack and the actual jump to the intended gadget, callee-

saved registers are restored (s0–s11 on RISC-V). Note that none of

the function epilogue sequences of the applications evaluated in

Section 6 was free of side effects.

Memory Alignment. The gadget space on x86 highly benefits

from unaligned single-byte instructions. For example, pop rdi; ret
compiles to two bytes, which is already a useful gadget: It loads an

argument register from the stack and returns to an address from

the stack. On RISC-V, instructions are aligned to either 4 Bytes, or

2 Bytes for compressed instructions. This makes unaligned instruc-

tions possible but unlikely (unaligned sequences cannot go past

two compressed instructions). In our empirical study in Section 6.3

we used one gadget that contained a single unaligned instruction.

However, contrary to x86 we did not find any gadget compiled only

of hidden instructions in real-world applications.

ARM64 has a fixed instruction size of 4 Bytes making unaligned

sequences entirely impossible. Therefore, the gadget space is limited

to the intended disassembly, i.e., we are limited to the intended

function epilogue sequences, which—as mentioned above—always

introduce side effects which need to be put into consideration.

Function Calls. Typically, ROP attacks build a gadget chain that

sets arguments to call arbitrary functions. On RISC-V and ARM64

the arguments have to be loaded into dedicated argument regis-

ters (of which 8 are available on both architectures). Setting these

argument registers is challenging because function epilogue se-

quences do not set these registers, i.e., they only set callee-saved

registers. The apparent solution of using instructions from the func-

tion body introduces even more complexity, as the gadget has to be

executed until the next intended jump instructions because stack-

based return instructions do not occur unintentionally in real-world

programs.

System Calls. Given the existing ROP attacks on programs com-

piled for x86, one might think that instead of calling a library func-

tion, the attacker could simply invoke a gadget that directly executes

a system call. However, the system call instruction (ecall/svc #0)
which has 4 Bytes on both architectures is very unlikely to be in-

cluded unintentionally and therefore does not exist in most applica-

tions that use the libc as a system call wrapper. In fact, none of our

real-world binaries analyzed in Section 6 includes such a gadget.

4 THREAT MODEL

RiscyROP analyzes the gadget space of real-world binaries and

automatically generates ROP chains for RISC-V and ARM64. Hence,

we build on a threat model and program state in which the execu-

tion of ROP chains is possible. This requires an attacker to exploit

a program vulnerability (e.g., a buffer overflow vulnerability on

the stack or heap) to control an indirect jump instruction and to

ultimately gain arbitrary execution capabilities.

Note that return-oriented programming (ROP) [40] is a code-

reuse attack that bypasses non-writable code sections (W⊕X) [45].
To do so, a ROP exploit requires exploiting a memory corruption

vulnerability to overwrite a return address on the stack or a func-

tion pointer on the program’s heap or stack. We assume that such

a vulnerability is present in the programs we test. Binaries may

be additionally hardened against buffer overflow vulnerabilities

and code-reuse attacks using, e.g., stack canaries and address ran-

domization such as ASLR. However, such defenses are typically

bypassed by using an information leak vulnerability prior to the

ROP attack. Therefore, we do not consider them for the sake of

simplicity.

RAID 2022, October 26–28, 2022, Limassol, Cyprus Cloosters et al.

5 RiscyROP

RiscyROP is a novel ROP gadget finding and chaining tool based

on symbolic execution targeting RISC-V and ARM64 to accurately

handle the challenges described in Section 3, for which the com-

monly used Galileo algorithm is insufficient. It analyzes gadgets

automatically to enable the generation of complex ROP chains to

allow an attacker to perform arbitrary function calls. RiscyROP

performs the following steps to construct such a ROP chain:

(1) RiscyROP first scans every aligned address in the target for

usable gadgets.

(2) These gadgets are then evaluated for fitness using symbolic

execution and subsequently stored in a database with their

respective constraints (e.g., preconditions and effects on reg-

isters).

(3) Next, RiscyROP uses the database to construct ROP chains by

stitching compatible gadgets. Candidate chains are verified

using symbolic execution to ensure that they do not contain

any breaking side effects. Gadgets are processed starting

with the least constrained one to optimize the run time.

(4) Lastly, once a gadget chain has been successfully verified,

RiscyROP generates the exploit payload using the argument

values chosen by the attacker.

In the following sections, we elaborate in detail how each of these

steps is executed by RiscyROP.

5.1 Gadget Finding

The gadget exploration of RiscyROP maximizes the usable gadget

space to include complex gadgets that are essential for ROP chains

on RISC-V and ARM64. Previous gadget finders [36, 6, 39] com-

monly find gadgets using a form of the Galileo algorithm [40], i.e.,

they search for a byte sequence or byte pattern that resembles a

return instruction. Next, they decode instructions in the reverse

execution order to find complete gadgets. In contrast, with symbolic

execution, we are independent of specific byte patterns, which al-

lows us to find every sequence of instructions that read an address

from the stack and finally jump to this (attacker-controlled) ad-

dress. Hence, we do not need to rely on known instruction patterns.

This is especially interesting for RISC-V, since non-leaf functions

(which must save the return address on the stack) include different

instructions between restoring the return register ra and jump-

ing to ra (cf. Section 3). In addition, symbolic execution allows us

to also utilize other types of jumps. For example, there are load-

jump sequences that effectively are stack-based returns but use dif-

ferent registers. The instructions ld a7,0x40(sp) ... jalr a7
(taken from Figure 4, gadget 3) effectively perform a stack-based

jump but using an argument register. Also, there are jump-to-

register gadgets (indirect function calls) which can be chained in

sequence to load-register gadgets to form a load-jump gadget. An

example is gadget 5 in Figure 4 which jumps to t1 and therefore

requires a preceding gadget that loads an attacker-controlled value

to t1 (gadget 2). Thus, symbolic execution identifies gadgets by

their effects independently of specific instructions.

We build RiscyROP on top of the angr framework [41] and its

PCode engine. Since the support for PCode of angr is experimental

and mostly untested on RISC-V, we had to implement the register

and calling contention to execute RISC-V assembly within angr.

In the exploration phase, RiscyROP symbolically analyzes every

(aligned) address independently to enumerate potential gadgets.

Our approach does not rely on any specific instruction (e.g., a stack-

based return) to be present and at no point utilizes pattern matching.

The analysis executes the following steps:

(1) Symbolically initialize registers and stack.

(2) Execute the instructions at this address until the control-flow

changes to a symbolically unconstrained target, e.g., a return

or jump to an unset register.

(3) Analyze the reached state and summarize the effect of the

specific gadget on the program state.

During this process, the gadget finder enforces some timeouts

and limits to exclude certain edge cases. First, there may be ad-

dresses that cause long-running loops: Thus, we abort the analysis

process when a code sequence reaches 500 instructions. Second,

we limit the maximum complexity of symbolic constraints of the

found gadgets. These are the conditions that result from condi-

tional branches within the gadgets that must be true to reach the

desired target state, i.e., the end of the respective gadget. If the

z3-solver [31] (used by angr) cannot determine if a target state is

satisfiable within 250ms, we assume that the analyzed path is not

useful as a ROP gadget and discard it because the respective gad-

get is unlikely to be useful as part of a ROP chain due to the high

complexity of its side effects. Upon completion, RiscyROP creates a

database containing all viable gadgets along with the controllable

registers, their constraints, and other side effects. Figure 1 shows an

example of a gadget analyzed by RiscyROP including the extracted

information.

Gadget Effects. The effects of a gadget are summarized to easily

filter candidates for a ROP chain, i.e., the effects of a ROP gadget

must not violate the requirements of succeeding gadgets. Hence,

RiscyROP determines which registers:

• are overwritten with data from the stack,

• only depend on one different register (e.g., due to a move

instruction: mv a3, s20),
• are set to a constant, and

• are changed otherwise in more complex calculations.

Figure 1 shows the results for one example gadget. In this case, the

analysis executes until the jalr a7 instruction, a jump to a register

with an unconstrained value. Note that this passed the conditional

branch at 0x5ee. Thereafter, RiscyROP evaluates the changes of

the symbolic state: a3 and a7 are set to values which are read from

the stack, other argument registers are set from s-registers, and the
jump-and-link (jalr) instruction stores the subsequent address in

ra for returning. The stack pointer is unchanged, which must be

considered for chaining because a following gadget could read the

same values from the stack and cause problems. This is unlike clas-

sical ROP gadgets on x86 which commonly use pop instructions to

read and clear stack values in one step and thus avoid such conflicts.

Further, the analysis concludes that the terminating unconstrained

jump of this gadget is controllable using offset 0x40 on the stack.

Lastly, the constraints to reach this state require s0 to be equal

to the value on the stack at offset 0x28, which requires s0 to be

controlled by a preceding gadget. This information is also stored in

the database to be used in the chaining stage.

RiscyROP: Automated Return-Oriented Programming Attacks on RISC-V and ARM64 RAID 2022, October 26–28, 2022, Limassol, Cyprus

Analyzed gadget Extracted Information

0x5e6: c.ldsp a3,0x28(sp)
0x5e8: c.ldsp a7,0x40(sp)
0x5ea: c.mv a4,s3
0x5ec: c.mv a6,s0
0x5ee: bne a3,s0,0x5fe

0x5f2: add a5,s1,tp
0x5f6: c.mv a2,s2
0x5f8: c.mv a1,s5
0x5fa: c.mv a0,s4
0x5fc: c.jalr a7

0x5fe: c.jr ra

Data flow:

• [sp + 0x28] � a3
• [sp + 0x40] � a7

• s0 � a6
• s2 � a2
• s3 � a4
• s4 � a0
• s5 � a1

• s1 + tp � a5
• 0x5fe � ra

Stack Pointer: sp += 0 (unchanged)

Constraints: [Stack + 0x28] == s0
Final Jump: [Stack + 0x40]

Figure 1: Example of the classification of a gadget by RiscyROP using the symbolic execution engine.

Gadget Preconditions. RiscyROP focuses on two types of precon-

ditions: the return type of the gadget and the path constraints. The

return type determines how a gadget can be chained to other gad-

gets. We differentiate between two broad classes: Either RiscyROP

can prove that the jump target was read from the stack, then it can

be simply chained using the stack, or the jump target originates

from a register value, then the gadgets always need a preceding gad-

get to control the jump’s target register. Hence, the first gadget in

a chain always has to be in the stack-returning class. The extracted

information is later leveraged in the gadget chaining process. For

the path constraints, we store the preconditions that need to be

fulfilled to make the gadget usable. As an example, this could be

the condition of a conditional branch in the gadget. Additionally,

the extracted constraints are also used for chaining as they indicate

the complexity of a gadget.

5.2 Gadget Chaining

On the basis of the database gathered in the gadget finding stage,

RiscyROP utilizes the gadget information to find candidate chains

according to their requirements and effects. Each candidate chain

is symbolically executed to verify it. The algorithm is depicted in

Figure 2.

Specifically, RiscyROP constructs ROP chains for arbitrary func-

tion calls, thus stitches gadgets that control a set of (argument)

registers and jumps to a given function. It takes the initial target

registers (chosen by the attacker) as input and traverses the data-

base to find gadgets that are suitable, i.e., gadgets that can control

all or most of the target registers. Gadgets are processed by the

following priority to find chains more quickly:

(1) Gadgets that load a target value from the stack are preferred

over gadgets that load the value from another register.
(2) Gadgets that return to a stack-read address are preferred

over register based returns (as these add another constraint).

(3) Gadgets are sorted based on the number of controlled target

registers and their complexity (instruction count in this case)

to keep the overall chain complexity to a minimum.

After a gadget is selected, the target registers are updated for the

next iteration to include remaining registers and new dependencies,

that are

(1) target registers that are unaffected by the selected gadget,

Initial target registers, e.g.,

𝑇0 = {a0, a1, a2, a3}

Add (next) gadget

(priority order)

Chain

satisfiable?

Update target registers

𝑇𝑛+1 = 𝜙 (𝑇𝑛):
• Remove controlled registers

• Add new dependencies

e.g., 𝑇1 = {a0, s0, s1, t1}

𝑇𝑛
?

= ∅
Is 𝑇 empty?

Drop last gadget

(and restore 𝑇𝑛−1)

Chain

valid?

Chain found

yes

no

yesno

valid

invalid

Figure 2: Simplified algorithm to generate a gadget chain as

used in RiscyROP. Starting from the register set targeted by

the attacker for the function call, gadget effects are applied

until all requirements are resolved. The ROP chain is con-

structed in reverse execution order.

(2) source registers of move-gadgets (register-to-register), and

(3) the register to control the jump target of a gadget (if it is not

a stack-returning gadget).

RAID 2022, October 26–28, 2022, Limassol, Cyprus Cloosters et al.

This procedure is done recursively until no registers remain (or a

predefined chain length threshold is reached). This approach allows

efficient generation of candidate chains and tackles the architectural

challenge of missing stack-based returns.

In the next step, RiscyROP executes the full chain candidate

using angr to test if the chain yields the desired effect (e.g., a func-

tion call with attacker-controlled arguments). The details of this

execution step are similar to the gadget analysis, with the addition

that the next gadget is inserted whenever the controlled jump (end

of a gadget) is reached. In the final step, RiscyROP calculates the

concrete exploit payload for the entire chain which is adapted to

the attacker’s argument values.

Optimizations. This chaining procedure aims to minimize the

workload of the symbolic solver to efficiently find ROP chains: First,

the precomputed gadget summaries in the database allow RiscyROP

to generate chain candidates without invoking the symbolic engine.

The iteration process prioritizes gadgets that are more likely to

succeed. Lastly, RiscyROP checks if partial chains are satisfiable

to reject contradicting chain suffixes. This avoids traversing the

database for further gadgets, when the current partial chain already

overwrites registers that are necessary as part of the ROP chain

with values that cannot be controlled by the attacker.

6 EVALUATION

We evaluate RiscyROP using applications and libraries from the

official Ubuntu repository that are compiled for ARM64 and RISC-V

and analyze, for the first time, their gadget space. We first compare

a public exploit chain for x86 with chains for these RISC architec-

tures to demonstrate the complexity of RISC gadgets. Thereafter, we

quantify the gadget space showing that the available gadget space

is indeed limited compared to x86. Lastly, we discuss a ROP chain

on RISC-V in detail to elaborate on the principles to construct func-

tion call chains. In our evaluation, we target the C standard library

glibc, which is commonly used for ROP exploits as it is loaded by

most applications on Linux. Furthermore, we analyze two popular

web applications namely nginx and php. Lastly, we include libpho-

nenumber, a small library known from Android written by Google

in C++. While C++ code tends to contain more indirection than C

code, which generally leads to a larger gadget space, the small size

of the library makes chaining of ROP gadgets very challenging.

6.1 Exploiting nginx: x86, RISC-V and ARM64

nginx [32] is a popular HTTP server and proxy. We analyze a stack-

based buffer overflow and corresponding ROP chain that was found

for nginx and compare it with chains automatically generated by

RiscyROP for RISC-V and ARM64. The goal of the ROP chain is a

call to mprotect to make memory writable and executable, which
is used to execute shellcode. Figure 5 shows the ROP chains in the

context of the CVE-2013-2028 exploit [11] to construct a malicious

call to mprotect. On x86, this chain consists only of unintended code

sequences (due to unaligned memory access), which are mostly 2-

byte pop/ret sequences that directly pop values into the argument

registers. One can observe the side effect of the second gadget that

needs rax to be a valid address. This is the reason to include the first
gadget to set rax to a known address. In comparison, the gadget

chains for RISC-V and ARM64 are more complex and therefore not

a0 a1 a2 a3 a4 a5 a6 a7 s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s1
0

s1
1 t0 t1 t2 t3 t4 t5 t6

libc, nginx, php, libphonenumber

0

5000

10000

15000

20000

25000
load X from stack,
stack return
set X from reg,
stack return
load X from stack,
jmp to reg
set X from reg,
jmp to reg

(a) RISC-V

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x1
0

x1
1

x1
2

x1
3

x1
4

x1
5

x1
6

x1
7

x1
8

x1
9

x2
0

x2
1

x2
2

x2
3

x2
4

x2
5

x2
6

x2
7

x2
8

libc, nginx, php, libphonenumber

0

5000

10000

15000

20000

25000 load X from stack,
stack return
set X from reg,
stack return
load X from stack,
jmp to reg
set X from reg,
jmp to reg

(b) ARM64

Figure 3: Gadget space of official Ubuntu binaries (excluding

dynamically loaded libraries): For every register, there is a

stacked bar for each of the listed applications showing the

number of gadgets present in the respective category. Note

that stack-load stack-return gadgets are almost only found

for callee-saved registers.

as easy to validate manually. RiscyROP can prove using symbolic

execution that the attacker can control the arguments with values

from the stack and that it does not contain side effects that are out

of control for an attacker (e.g., in the RISC-V chain, data is stored

relative to a0 which is controlled by the first gadget).

The conceptual details of a ROP chain on RISC-V are explained

in Section 6.3. The core of this specific chain, which ultimately

allows access to the argument registers, is a gadget that copies data

from the stack to a given pointer while using the argument registers
as temporary variables. The ARM64 chain uses an indirect function

call (see Section 6.3); the challenging part is to find a gadget that

RiscyROP: Automated Return-Oriented Programming Attacks on RISC-V and ARM64 RAID 2022, October 26–28, 2022, Limassol, Cyprus

Target Lang. Version

Function Call Arguments

RISC-V ARM64
glibc C 2.31 ≤ 7 ≤ 7

nginx C 1.18 ≤ 3 ≤ 6

php C 8.0.8 ≤ 4 ≤ 4

libphonenumber C++ 8.12.16-4.2 ≤ 6 ≤ 4

Table 2: Maximal arguments of function call chains con-

structed by RiscyROP using the gadget space of official

Ubuntu binaries (dynamically loaded libraries are excluded).

controls the target of that call (x4), which again needs a gadget to

control its side effects on the x0 register.

6.2 Gadget Space Statistics

Figure 3 shows an overview of the gadgets we collected during

our analysis as classified by the symbolic execution engine. For

every register and application, the graph shows a bar, which cor-

responds to the number of gadgets in the respective groups. The

gadgets count as stack-return if the final jump is determined to be

an address from the stack. Otherwise, it counts as register jump

if the target is controllable by a register, e.g., not a constant value.

A gadget is counted in multiple groups, if it sets multiple regis-

ters. First, one can clearly see the separation of argument registers

a0–a7/x0–x7 and callee-saved registers, which are restored by the

function epilogues. As functions use the low-numbered registers

first, there are more function epilogues that restore these registers.

Second, gadgets that directly load an argument register from the

stack are rare. Therefore, a pair of gadgets is needed to first load the

values and then transfer them to argument registers (cf. Section 6.3).

Third, the overall number of gadgets that set argument registers is

rather small; especially when excluding libc. This number becomes

even smaller when an attacker aims to control multiple registers

because—considering the size of the gadgets—there often are side

effects that overwrite other registers. However, using symbolic ex-

ecution we can easily filter gadgets for such side effects. Table 2

shows the maximum number of function arguments that can be

controlled using ROP chains discovered by RiscyROP. These chains

confirm that RiscyROP tackles the challenges described in Section 3,

but also shows that the gadget space is very limited. For some ar-

gument registers all available gadgets in the application binary

have side effects that overwrite other arguments, which makes it

impossible to control all arguments of a function call with a ROP

chain. When exploits require more argument registers, an attacker

can use additional gadgets from the loaded libraries, in particular

the libc.

6.3 Function Call Chain in the RISC-V libc

In what follow, we analyze the libc standard library from the official

Ubuntu repository for RISC-V. We use RiscyROP to create ROP

chains which one can use to make malicious functions calls with

attacker controlled arguments. The libc is an important target for

ROP as it is commonly loaded into the address space of applications

and its size offers a broad gadget space, thus it was often subject of

previous work on ROP attacks [40, 5, 8]. The ROP chain we found

in the libc for RISC-V demonstrates how RiscyROP uses complex

gadgets to construct impactful exploit chains.

Figure 4 shows a chain that was generated by RiscyROP to per-

form a 7-argument function call which has similar characteristics

as the chain we found on RISC-V. Gadget 4 and 5 are a loader and

a dispatcher gadget which represent the basic building blocks for

ROP chains on RISC-V and ARM64. Gadget 4 loads values from

the stack and gadget 5 moves these values into the argument regis-

ters and calls a function. The former is a function epilogue which

restores the callee-saved registers s0–s10 from the stack and the

latter is typically found in indirect function calls. Our tool selects

these gadgets as a starting point to build the chain (in reverse order)

because it can control five out of the seven target registers used to

transfer function arguments. RiscyROP needs to use both gadgets

as the libc for RISC-V does not contain any gadget which directly

loads all necessary argument registers from the stack.

Gadgets 2 and 3 have similar functionality as gadgets 4 and 5, i.e,

they first load a value from the stack and then copy them into the

desired registers. In this case, gadget 3 has additional side effects that

are beneficial for the chain because they reduce the dependencies

on the loader: First, one argument register is popped directly from

the stack. Second, the preface of the indirect function call (jalr a7)
in this gadget loads the address from the stack. RiscyROP detects

this automatically as a stack-based return and prefers such gadgets

because they add fewer dependencies. Third, it sets a0 from s4
which eases controlling the branch in gadget 4. Gadget 2 resolves

the dependency of gadget 5 on t1. Notably, this gadget is special
because it starts with an unintended instruction prior to the usual

function epilogue. The mv t1, ra is a 2-byte instruction that is part

of a 4-byte jump instruction.

Lastly, we need to control the remaining registers ra and s4,
which is achieved with gadget 1. However, ra is not only used to

control t1, but also to chain gadget 2 to gadget 1. The result is,

that the value of the jump target t1 in gadget 5 can only be the

address of gadget 2 (otherwise gadget 1 would not have jumped to

gadget 2). The symbolic execution engine finds this constraint and

automatically executes gadget 2 again after gadget 5, which allows

us to control the final jump target via the stack.

After executing this gadget chain and concluding that it is sat-

isfiable (cf. Section 5.2), RiscyROP generates the exploit payload.

Note that during the generation of this ROP chain, RiscyROP as-

sured that there are no dependencies on the memory other than the

stack, i.e., all memory accesses are controllable by the attacker. This

counteracts a common problem of symbolic execution-based ROP

chain generation [37], like angrop [44], namely that the resulting

ROP chains have side effects that cause the process to crash.

6.4 Run time

We measure the run time to quantify the performance of RiscyROP

demonstrating that an elaborated symbolic execution analysis is

feasible for an attacker. We execute the run-time evaluation in a vir-

tualized environment on an Intel Xeon Gold 6326 using 64 threads

(32 cores) and 64GB of RAM. Table 3 shows the results of the mea-

surements for our eight targets. The first columns show the size of

the executable sections within the binary which maps to the range

the analysis operates on, the time of the initial analysis, and the

RAID 2022, October 26–28, 2022, Limassol, Cyprus Cloosters et al.

; gadget 1
0xb3058: c.ldsp s4,0x28(sp) ; load s4 (for condition
0xb305a: c.ldsp ra,0x8(sp) ; in gadget 4)
0xb305c: c.addi sp,0x10
0xb305e: c.jr ra

; gadget 2
0xc1e82: c.mv t1,ra ; control t1
0xc1e84: c.ldsp ra,0x8(sp)
0xc1e86: c.ldsp s0,0x0(sp) ; load a6
0xc1e88: c.addi sp,0x10
0xc1e8a: c.jr ra

; gadget 3
0xb3b88: c.ldsp a3,0x28(sp) ; load a3 (becomes a5 in G 4)
0xb3b8a: c.ldsp a7,0x40(sp)
0xb3b8c: c.mv a4,s3
0xb3b8e: c.mv a6,s0 ; set a6
0xb3b90: add a5,s1,tp
0xb3b94: c.mv a2,s2
0xb3b96: c.mv a1,s5
0xb3b98: c.mv a0,s4 ; set a0 (for condition
0xb3b9a: c.jalr a7 ; in gadget 4)

; gadget 4
0x7ba5c: c.mv a5,a3 ; set a5
0x7ba5e: bne a5,a0,0x7ba4a ; conditional branch
0x7ba62: c.ldsp ra,0x58(sp)
0x7ba64: c.ldsp s0,0x50(sp)
0x7ba66: c.ldsp s1,0x48(sp)
0x7ba68: c.ldsp s2,0x40(sp)
0x7ba6a: c.ldsp s3,0x38(sp) ; load a1
0x7ba6c: c.ldsp s4,0x30(sp) ; load a3
0x7ba6e: c.ldsp s5,0x28(sp)
0x7ba70: c.ldsp s6,0x20(sp) ; load a0
0x7ba72: c.ldsp s7,0x18(sp) ; load a2
0x7ba74: c.ldsp s8,0x10(sp) ; load a4
0x7ba76: c.ldsp s9,0x8(sp)
0x7ba78: c.ldsp s10,0x0(sp)
0x7ba7a: c.addi16sp sp,0x60
0x7ba7c: c.jr ra

; gadget 5
0xb3510: c.mv a4,s8 ; set a4
0xb3512: c.mv a3,s4 ; set a3
0xb3514: c.mv a2,s7 ; set a2
0xb3516: c.mv a1,s3 ; set a1
0xb3518: c.mv a0,s6 ; set a0
0xb351a: c.jalr t1 ; jump to gadget 2

; gadget 2 again
0xc1e82: c.mv t1,ra
0xc1e84: c.ldsp ra,0x8(sp)
0xc1e86: c.ldsp s0,0x0(sp)
0xc1e88: c.addi sp,0x10
0xc1e8a: c.jr ra

Figure 4: ROP chain for the RISC-V libc to perform a 7-argument function call generated by RiscyROP in execution order.

number of resulting gadgets. Our results show that RiscyROP has a

reasonable run time (minimum one hour, maximum 14 hours) to

complete its analysis which is similar to other symbolic execution

approaches [39, 37].

The relation of run time and binary size is roughly proportional.

We observe that the progression during the analysis depends on

the complexity of the analyzed code. For example, the analyses

executed on the php binaries spent about 3.5 h in a (symbolically)

complex code range that yielded few gadgets. However, the overall

run time is still reasonable due to the fact that an attacker only

needs to run the analysis once to perform an attack.

The last three columns refer to the chaining algorithm. Note that

the current implementation of RiscyROP runs the gadget chaining

single-threaded as this part only requires a few seconds. Table 3

denotes the number of argument registers that a chain can set prior

to the function call, i.e., the maximum number of parameters the

attacker-called function can have, and the total chain length (num-

ber of gadgets and instructions, respectively). Note that the chain

for nginx on RISC-V is limited to three arguments because the bi-

nary does not contain a gadget to control a3 (the 4th argument

register). Nevertheless, our PoC exploit in Section 6.1 demonstrates

that an attacker can still mount reasonable attacks because three ar-

guments is sufficient to manipulate the memory permissions using

mprotect to load arbitrary shellcode. Additionally, if an attacker

only needs to control some of the function call parameters, e.g.,

arguments 1, 3, and 5 they can use RiscyROP to explicitly search

for this particular subset of registers. However, for the sake of sim-

plicity we do not include such chains in Table 3. The results for

libphonenumber show that the chaining time can increase notably

with a more constrained gadget space like this small binary. Since

the default threshold time of 60 seconds only produced chains for

3 and 5 arguments, respectively, we continued the analysis to find

chains that control even more arguments. Hence, Table 3 includes

multiple chains for the libphonenumber binary. This is a result of

the priority order of the algorithm, which prioritizes chains which

include gadgets it deems most useful. In this case, however, the

binary contains multiple equally ranked gadgets, each of which

sets only a subset of the target registers. Therefore, RiscyROP has

to find and chain multiple loader/dispatcher pairs (cf. Section 6.3)

to set all registers simultaneously. In this process, RiscyROP has to

execute all candidate chains symbolically to ensure that the final

chain does not overwrite data we later need to successfully execute

a function call which increases the overall run time. However, the

chaining process still only requires a few minutes and therefore

is not an issue for an attacker. The complexity of the resulting

chains also shows that manual chaining of these complex gadgets

is not feasible for binaries which are compiled for modern RISC

architectures.

RiscyROP: Automated Return-Oriented Programming Attacks on RISC-V and ARM64 RAID 2022, October 26–28, 2022, Limassol, Cyprus

x86_64 RISC-V ARM64

; avoid side-effect (next xor)
pop rax ; some known address
ret

; third argument (0x7)
pop rdx
xor [rax-0x77], cl
ret

; second argument (0x1000)
pop rsi
ret

; first argument (shellcode dst)
pop rdi
ret

c.ldsp a0,0x8(sp)
c.j 0x41c6f4 ; constant jump
c.ldsp ra,0x48(sp)
c.ldsp s0,0x40(sp)
c.ldsp s1,0x38(sp)
c.ldsp s2,0x30(sp)
c.ldsp s3,0x28(sp)
c.ldsp s4,0x20(sp)
c.ldsp s5,0x18(sp)
c.addi16sp sp,0x50
c.jr ra ; return

c.addi4spn s1,sp,0x0
c.ld a1,0x8(s1)
c.ld a2,0x10(s1)
c.ld a3,0x18(s1)
c.ld a4,0x20(s1)
c.ld a5,0x28(s1)
sd a6,0x0(a0)
c.sd a1,0x8(a0)
c.sd a2,0x10(a0)
c.sd a3,0x18(a0)
c.sd a4,0x20(a0)
c.sd a5,0x28(a0)
sd a0,0x2a8(s0)
c.ldsp ra,0x18(sp)
c.ldsp s0,0x10(sp)
c.ldsp s1,0x8(sp)
c.mv a0,s2
c.ldsp s2,0x0(sp)
c.addi16sp sp,0x20
c.jr ra ; return

ldr x0, [sp, #0x40]
b #0x2e548 ; constant jump
adrp x1, #0x122000
ldr x1, [x1, #0xa40]
ldr x2, [sp, #0x48]
ldr x3, [x1]
subs x2, x2, x3
mov x3, #0
b.ne #0x2e5bc ; conditional jump
ldp x21, x22, [sp, #0x20]
ldp x23, x24, [sp, #0x30]
ldp fp, lr, [sp], #0x50
br lr ; return

ldr x4, [sp, #0x60]
cbnz x0, #0xafa90
ldp x21, x22, [sp, #0x20]
mov x20, #0x1f4
ldp x23, x24, [sp, #0x30]
ldp x25, x26, [sp, #0x40]
ldp x27, x28, [sp, #0x50]
adrp x0, #0x122000
ldr x0, [x0, #0xa40]
ldr x1, [sp, #0x1d8]
ldr x2, [x0]
subs x1, x1, x2
mov x2, #0
b.ne #0xaff34 ; conditional jump
mov x0, x20
ldp x19, x20, [sp, #0x10]
ldp fp, lr, [sp], #0x1e0
br lr ; return

mov x2, x22
mov x1, x19
mov x0, x26
blr x4 ; indirect call

Figure 5: Comparison of ROP chains in the nginx binary for the three architectures as required for a 3-argument function call

to mprotect. The two RISC chains contain several jumps making the gadgets non-linear. The x86 ROP chain was part of the

CVE-2013-2028 exploit.

6.5 Related ROP assistance and chaining tools

Several tools for both ROP gadget finding [6, 1, 35] and chain-

ing [44, 37] have been proposed over the last years. However, none

of the existing chaining approaches supports RISC-V or ARM64

binaries as they mainly focus on x86. In contrast, gadget finding

tools often support RISC-V and ARM64 because the underlying dis-

assembler supports these architectures and the finding algorithm

itself is sufficiently generic and architecture-independent. The al-

gorithms leveraged for gadget finding are commonly based on the

Galileo algorithm and are well suited for the short, and in particular

unaligned, instruction sequences of x86. However, the complex gad-

gets of the RISC architectures we analyze require further analysis

to make chaining feasible. In addition, there are barely any unin-

tended gadgets in RISC-V, where a pattern-based approach could

be beneficial. To the best of our knowledge there does not yet exist

any other gadget chaining approach specifically for RISC-V/ARM64.

Hence, we focus our comparison on the gadget finding approaches.

6.5.1 radare2/rizin. radare2 [1] and its fork rizin [35] are well-

known tools for binary analysis for different architectures which

includes finding ROP gadgets. We categorize the results using the

RISC-V libc as an example. radare2 returns 62 134 gadgets of which:

12 330 (19.8 %) are unaligned with respect to the architecture and

are therefore false positives. This is to be distinguished from

unintended gadgets, which are in the architecture’s alignment of

the instruction pointer, but originally part of a longer instruction.

6894 (11.1 %) contain invalid instructions, i.e., bytes that radare2 is

unable to disassemble.

37 574 (60.5 %) terminate with a jump to a constant address or off-

set, which makes them not controllable by an attacker and there-

fore not chainable. However, RiscyROP was able to show that

3771 (6.1 %) of these gadgets jump to code which ultimately lead

to an attacker controlled jump and thus can be used as part of a

ROP chain. RiscyROP is able to provide such insights because the

symbolic execution engine can calculate the jump targets and

RAID 2022, October 26–28, 2022, Limassol, Cyprus Cloosters et al.

Target Version

Executable Run time

Gadgets

Run time Chain Chain Length/

Bytes Finding Chaining Arguments Instructions

glibc-riscv

2.31

736 926 5.02 h 56 035 25 s 7 5 44

glibc-aarch64 984 372 4.21 h 62 344 35 s 7 3 41

nginx-riscv

1.18

526 452 3.37 h 45 391 8 s 3 2 24

nginx-aarch64 742 224 4.49 h 48 844 33 s 6 3 21

php-riscv

8.0.8

2 000 844 14.04 h 144 773 48 s 7 3 39

php-aarch64 2 590 364 9.81 h 136 284 49 s 7 3 44

libphonenumber-riscv

8.12.16-4.2

166 184 0.52 h 7761

15 s 5 4 50

3m 23 s 6 4 38

libphonenumber-aarch64 218 272 0.49 h 9165

12 s 3 3 33

2m 14 s 4 3 45

11m 13 s 5 4 64

Table 3: Run-time evaluation of RiscyROP. Chain Arguments denotes that the chain controls the first 𝑛 argument registers.

thereby continue the analysis beyond these jumps which is not

possible with simple gadgets finders as found in radare2/rizin.

An attacker is unlikely to identify these without symbolic exe-

cution. Note that such gadgets are not found by more advanced

tools such as angrop, which ignores all gadgets containing (con-

ditional) jumps.

4272 (6.9 %) are matching gadgets with RiscyROP.

In summary, 53 027 (85.3%) of the gadgets found by radare2 are

unusable.

The results of radare2 for the libc on ARM64 consist of 24 418
gadgets of which at least 16 319 (66.8 %) are unusable, 3726 (15.3 %)

are valid when extended beyond a constant jump, and 3323 (13.6 %)

match with RiscyROP.

Next, we discuss the number of additional gadgets that RiscyROP

finds. For this comparison, we define unique gadgets as a sequence
of instructions that is not a suffix of another gadget. This definition

matches the results of the algorithm used by radare2, which includes

overlapping gadgets if each contains a different instruction at the

same offset, e.g., due to differently aligned instruction bytes. Using

this definition, the database of RiscyROP contains 13 862 unique

gadgets for the libc on RISC-V and 9955 for libc on ARM64, of which

all are proven to terminate with an attacker-controlled jump. Thus,

RiscyROP does not only exclude a considerable number of unusable

gadgets compared to radare2/rizin, but also identifies additional

gadgets.

6.5.2 angrop. angrop [44] is the ROP chaining tool featured in the

angr suite and aims to support all the architectures supported by

angr (which, at the time of writing, excludes RISC-V). Note that

we implement RISC-V support in angr based on its PCode engine,

whichwe further use to implement RiscyROP (cf. Section 5.1).While

this enables angr to execute RISC-V code, angrop still fails to handle

RISC-V because it depends on the VEX engine and is incompatible

with the PCode engine.

In contrast, ARM64 is supported by the VEX engine and thus can

be analyzed using angrop. However, the optimizations of angrop

for x86 limit its usefulness when analyzing binaries compiled for

ARM64. For example, by default angrop uses a maximum basic

block size of 12 Byte (3 instructions) for the full binary analysis

(fast mode) and 32 Byte (8 instructions) for partial code sections.

This is clearly insufficient, considering the typical length of func-

tion epilogues on ARM64 (cf. Figures 4 and 5 and Table 3), and

leads mainly to trivial ret sequences without any useful effect. We

disable these optimizations and manually increase the maximum

block size to a sufficiently large for all ARM64 binaries. However,

even after this optimization angrop is still not able to find the com-

plex gadgets required for a successful attack because the gadget

validation does not utilize symbolic execution but static analysis.

Hence, angrop rejects all gadgets containing a constant jump (prior

to the final attacker-controlled jump). Additionally, ARM64 binaries

contain gadgets—including those shown in Figure 5—which include

conditional branches and thus are ignored by angrop.

7 DISCUSSION

In this section, we discuss several practical aspects of RiscyROP,

how existing mitigation technologies such as control-flow integrity

can be applied to RISC-V and ARM64 to prevent RiscyROP-based

attacks, and leveraging RiscyROP for automated exploit generation.

Case Study: Trusted Execution Environments. A trusted ex-

ecution environment (TEE) allows software developers to store

and execute security-critical data and code inside a strongly iso-

lated environment, often referred to as an enclave. Keystone [28]

leverages the physical memory protection (PMP) unit of RISC-V to

implement trusted execution and secure enclaves on RISC-V pro-

cessors. This enables isolated processes that cannot be manipulated,

even if the attacker has compromised the operating system or hy-

pervisor. However, the software within the enclaves is still prone

to memory-corruption vulnerabilities and control-flow hijacks [3],

and the binary interface of enclaves exposes a wide attack surface,

which together introduces a high risk of vulnerabilities [47, 10].

For instance, enclaves developed for Intel’s TEE system, called Soft-

ware Guard Extensions (SGX), have been recently compromised

since fingerprint driver software suffered from several memory

RiscyROP: Automated Return-Oriented Programming Attacks on RISC-V and ARM64 RAID 2022, October 26–28, 2022, Limassol, Cyprus

corruption errors [10, 9]. In contrast to SGX, Keystone enclaves

do not share the address space with the untrusted world, which

makes null-pointer dereferences hardly exploitable. Further, Key-

stone enclaves cannot access the standard system calls, but only

application-specific functions implemented in the trusted OS layer.

This limits the privileged calls available to enclaves, and shellcode

injection attacks based on manipulation of memory permissions

are usually not possible. Hence, elaborated ROP chains are the only

option.

To verify a ROP chain on Keystone, we exploit the attestation

demo application running within a Keystone enclave on a HiFive

Unleashed RISC-V development board. The purpose of the demo

application is to receive a nonce and attest its integrity to a remote

party via network. We add a stack-based buffer overflow vulner-

ability and use RiscyROP to generate a ROP chain that calls the

enclave’s output function with the address of the secret buffer. This

confirms that RiscyROP is perfectly capable of generating ROP

chains for Keystone applications.

Finding even more gadgets. Currently, we focus on gadgets

that allow controlling the registers to function calls, which is the

main prerequisite to launch ROP attacks. However, it might be also

interesting to extend RiscyROP such that memory write gadgets

are supported as this would allow us to use, e.g., automated string

arguments.

RiscyROP for x86. RiscyROP solves unique challenges (cf. Sec-

tion 3) to make ROP chaining based on the limited gadget space of

RISC-V and ARM64 binaries feasible and is designed to expand the

available gadget space as far as possible to make complex gadgets

usable. Hence, other tools targeting x86 are not applicable to these

architectures. One might consider to use RiscyROP for x86 architec-

tures because the design of RiscyROP is not limited to RISC-V and

ARM64 but could be used for other architectures as well. However,

short and unaligned instruction sequences make the gadget space of

unprotected x86 binaries so large that such an in-depth analysis is

not necessary. In fact, related tools [39, 37] conclude that a random

sample of available gadgets is sufficient for ROP chaining on x86.

Then again, binaries may be protected by CFI schemes that limit

valid target addresses for control-flow transfers and thus reduce the

available gadget space for ROP chains [15]. The result is that fewer

gadgets are available, and they tend to be longer, more complex,

and carry more side effects. In this case, the in-depth analysis of

RiscyROP could be leveraged to compile ROP chains despite CFI.

Mitigations. Static CFI [26, 46], dynamic CFI [25, 48, 17] and

pointer authentication [29, 18] are the main solutions to mitigate

control-flow hijacking attacks. Both dynamic or static CFI focus on

reducing the potential targets of indirect branch and therefore limit

which gadgets can be chained. However, due to the well-known

limits of program analysis for determining the valid targets of a

control-transfer instruction, there is still a non-negligible amount

of potential targets which make control-flow hijacking possible.

Current pointer authentication solutions for ARM are based on a

new processor feature, which protects the integrity of data and code

pointers via a hash value encoded in the high bits of the address.

In this way, the target address is checked before an indirect branch.

Intel introduced Control-Flow Enforcement Technology (Intel CET)

to defend against control-flow hijacking attacks. However, no sim-

ilar native hardware anti-control-flow hijacking reinforcements

have been introduced by RISC-V yet. Porting a similar scheme to

RISC-V requires hardware changes [34, 16] or incurs additional

performance overhead. For example, pointer authentication can be

simulated by using the RISC-V hypervisor extension, which uses a

hyper call for every calculation and validation of every pointer hash

value and traps into the hypervisor to do the task. Even though it is

convenient to issue a hyper call in both user space and kernel space,

when deployed by large applications, it still costs non-negligible

performance overhead. Simple stack canaries and shadow stack

schemes can protect the return addresses from being smashed via

a stack overflow vulnerability. However, as there is a sequence

of register restoring instructions (ldsp instruction in Figure 4) be-

tween the check point and the real return instruction, the attacker

is still able to reuse the return-based gadgets. The stack canary

and shadow stack is not able to deal with call-oriented attack ei-

ther. Prior works [25, 26] protect indirect call targets in the source

code level regardless of the underlying architecture which includes

RISC-V.

Automatic Exploit Generation (AEG). Symbolic execution is

often used for automatic exploit generation [41, 2] for which an

attacker can leverage RiscyROP. However, AEG is still an active

research topic and the prevalence of security defenses (W⊕X, ASLR,
stack canaries, CFI, sandboxing, secure enclaves) make AEG for end-

to-end implementation use-cases increasingly harder. Thus, recent

tools focus on specific challenges within an end-to-end scenario

which can be combined to a complete AEG framework. Similarly,

RiscyROP focuses on ROP chains and is capable of automatically

generating exploit payloads based on a known vulnerability and

assuming that additional defenses are bypassed, e.g., using an in-

formation leak, stack pivoting, or similar techniques.

8 RELATEDWORK

For the x86 architecture Hund et al. [22] as well as Schwartz et

al. [39] build programs that are able to automate ROP attacks. Both

implementations use methods similar to the Galileo algorithm to

search for ROP gadgets in vulnerable programs and are therefore

limited in their usefulness for modern RISC processors such as

RISC-V (see Section 3), which is the main focus of RiscyROP. Fur-

thermore, these existing systems do not support pre-conditions for

gadgets and therefore ignore gadgets that, e.g., copy a value into a

register and subsequently jump to the address in that register. Our

implementation makes use of symbolic execution to find suitable

gadgets. Hence, we support any gadget that jumps to an address

which can be controlled by the attacker.

BOPC [23] is a tool to generate data-only exploits for x86 64 bit. It

uses symbolic execution to identify Data-Only Programming (DOP)

gadgets in target binaries and compile CFI-conforming execution

paths that emulate a given (Turing-complete) computation. The

evaluation of BOPC shows great success at the emulation of isolated

calculations using DOP gadgets, however, function call gadgets

like execve are less likely to be found. While BOPC claims to be

theoretically architecture independent, it is only implemented for

x86 64 bit, and it relies on angr’s VEX engine that does not support

RISC-V. Hence, we could not evaluate its capabilities on our target

RAID 2022, October 26–28, 2022, Limassol, Cyprus Cloosters et al.

binaries. The extent to which the challenges of RISC, particularly

the large number of dedicated registers, impact the DOP gadget

space is part of future work. Lastly, DOP attacks are often not

necessary in real-world scenarios since fine-grained CFI techniques

are not commonly implemented. Thus, ROP exploits are still the

prevalent method when exploiting a binary.

In academia, Jaloyan et al. [24] were the first to analyze ROP

attacks on the RISC-V architecture. The authors show that it is

possible to find gadgets in overlapping instructions and unintended

compressed instructions which an attacker can misuse to hide a

backdoor inside a program. Jaloyan et al. present an algorithm that

simply disassembles the RISC-V code at any possible offset to find

all existing code paths. They successfully attack a proof-of-concept

binary with hidden ROP gadgets inside dummy functions. In con-

trast, our work does not focus on hidden backdoors in specially

crafted binaries but rather on building automated fully-functional

ROP chains for real-world programs. Thus, we have to solve dif-

ferent challenges. Namely, we have to work with code that does

not include purposefully inserted gadgets, but only instructions

generated by compilers from benign source code. Therefore, we

implement an algorithm based on symbolic execution that can han-

dle the complex side effects due to the added complexity for ROP

chains in RISC-V.

Gu et al. [21] discuss the capabilities of ROP attacks on RISC-V us-

ing a libc binary. In contrast, we automate the analysis and selection

of gadgets as well as taking care of side effects. Thus, our approach

extends the usable gadget space and takes minimal manual effort

when attacking other binaries. Furthermore, we generalized Riscy-

ROP to also work on ARM64 and with any type of gadget, not just

the ones ending in a return instruction in function epilogues.

Buchanan et al. [5] investigate the possibilities of ROP attacks on

RISC architectures, more specifically the SPARC architecture. Con-

trary to ARM64 and RISC-V, SPARC processors use different sets

of registers to store stack frame data and therefore have different

requirements when building ROP chains. Furthermore, Buchanan

et al. do not use any automation to take care of potential side effects

and use only return-based gadgets, while our approach utilizes any

attacker-controlled control-flow transfer instruction.

Kornau [27] describes how to perform ROP attacks on binaries

compiled for the ARM32 architecture. The author discusses differ-

ent basic gadget types for ROP attacks on ARM32 as well as the

differences to attacks targeting the Intel x86 architecture. To find

gadgets inside an ARM binary, Kornau uses an algorithm similar to

the Galileo algorithm. Namely, it looks for a particular instruction

(e.g., a return-like instruction as part of the function epilogue) and

then traverses the instructions in reverse execution order. Davi

et al. [13] and Checkoway et al. [8] also worked on ROP attacks on

ARM32 and show that ROP attacks can be executed by exclusively

using gadgets that end with an indirect jump instead of a return-

like instruction, specifically the blx instruction, which is used to

jump from one gadget to another. The required gadgets, including

the chaining, have been constructed with a manual approach. Davi

et al. [12] present a ROP chain to successfully attack an Android

system running a vulnerable application. Contrary to these propos-

als, we focus on ROP attacks for the modern architectures, namely

ARM64 as well as RISC-V instead of ARM32, which come with a

different set of challenges. For example, the program counter on

ARM64 and RISC-V is not a general purpose register as on ARM32

which prohibits useful ROP instructions such as pop pc. Therefore,
ROP gadgets and resulting chains are more complex, which benefits

our approach that automatically takes care of the added complexity

via symbolic execution. Furthermore, RiscyROP finds and chains

gadgets automatically, and not only detects gadgets that end in

indirect jumps or simple return instructions, but further general-

izes the search for gadgets by utilizes symbolic execution to extend

the number of usable gadgets to any instruction that transfers the

control flow to a target under the attacker’s control.

Several tools such as radare2 [1] and ROPGadget [36] support

searching for gadgets in RISC-V as well as ARM64. However, these

tools commonly only support basic disassembly and pattern match-

ing for RISC-V and ARM64, and are not adapted to the more specific

characteristics of modern RISC architectures. Furthermore, they

leverage designs based on the Galileo algorithm to find gadgets

inside a binary. Hence, they are limited in finding gadgets [24]

and cannot handle side effects of function epilogues. Additionally,

they do not make use of symbolic execution to automatically find

preconditions and complex gadgets. Therefore, these tools do not

provide the same level of assistance as RiscyROP (see Section 6.5)

which cannot only find gadgets but also generate ROP chains auto-

matically.

9 CONCLUSION

Return-oriented programming (ROP) is the state-of-the-art memory

corruption attack technique. However, it is unclear to which extent

modern and emerging RISC architectures are vulnerable to ROP.

Our analysis on RISC-V and ARM64 real-world binaries demon-

strates that the gadget space available to the attacker is significantly

reduced compared to x86 and ARM32 due to architectural differ-

ences. Further, available code sequences introduce many side effects

that are almost impossible to resolve manually. As a consequence,

new analysis approaches need to be developed to understand the

risks of ROP attacks on these architectures. To do so, we develop

the first automated ROP chain toolkit for RISC-V and ARM64. Our

approach, called RiscyROP, uses symbolic execution to accurately

determine the gadget space and automatically generate complex

multi-stage chains for arbitrary function calls. We use RiscyROP to

automatically generate working ROP chains for various real-world

programs compiled for RISC-V and ARM64, including the standard

library libc.

ACKNOWLEDGMENTS

This work has been partially funded by the Deutsche Forschungsge-

meinschaft (DFG, German Research Foundation) under Germany’s

Excellence Strategy – EXC 2092 CASA – 390781972 and SFB 1119 –

236615297 within project S2.

REFERENCES

[1] Sergi Alvarez. radare2. 2008. url: https://rada.re/n/radare2.
html.

[2] Thanassis Avgerinos et al. “Automatic Exploit Generation”.

In: Communications of the ACM (2014).

https://rada.re/n/radare2.html
https://rada.re/n/radare2.html

RiscyROP: Automated Return-Oriented Programming Attacks on RISC-V and ARM64 RAID 2022, October 26–28, 2022, Limassol, Cyprus

[3] Andrea Biondo et al. “The Guard’s Dilemma: Efficient Code-

Reuse Attacks Against Intel SGX”. In: USENIX Security Sym-
posium. 2018.

[4] Tyler Bletsch et al. “Jump-Oriented Programming: A New

Class of Code-Reuse Attack”. In: ACM Asia Conference on
Computer and Communications Security (AsiaCCS). 2011.

[5] Erik Buchanan et al. “When Good Instructions Go Bad: Gen-

eralizing Return-Oriented Programming to RISC”. In: ACM
Conference on Computer and Communications Security (CCS).
2008.

[6] Amat Cama. xrop. 2017. url: https://github.com/acama/xrop.

[7] Nicholas Carlini et al. “Control-Flow Bending: On the Ef-

fectiveness of Control-Flow Integrity”. In: USENIX Security
Symposium. 2015.

[8] Stephen Checkoway et al. “Return-Oriented Programming

without Returns”. In: ACM Conference on Computer and Com-
munications Security (CCS). 2010.

[9] Tobias Cloosters et al. “SGXFuzz: Efficiently Synthesizing

Nested Structures for SGX Enclave Fuzzing”. In: USENIX
Security Symposium. 2022.

[10] Tobias Cloosters et al. “TeeRex: Discovery and Exploitation

of Memory Corruption Vulnerabilities in SGX Enclaves”. In:

USENIX Security Symposium. 2020.

[11] nginx-1.4.0 for the analysis of CVE-2013-2028. 2013. url: https:
//github.com/danghvu/nginx-1.4.0 (visited on 03/19/2022).

[12] Lucas Davi et al. “Privilege escalation attacks on Android”.

In: International Conference on Information Security. Springer.
2010.

[13] Lucas Davi et al. Return-Oriented Programming without Re-
turns on ARM. Tech. rep. HGI-TR-2010-002. 2010. url: https:

//www.ais.rub.de/media/trust/veroeffentlichungen/2010/

07/21/ROP-without-Returns-on-ARM.pdf.

[14] Lucas Davi et al. “ROPdefender: A Detection Tool to Defend

against Return-Oriented Programming Attacks”. In: ACM
Asia Conference on Computer and Communications Security
(AsiaCCS). 2011.

[15] Lucas Davi et al. “Stitching the Gadgets: On the Ineffective-

ness of Coarse-Grained Control-Flow Integrity Protection”.

In: USENIX Security Symposium. 2014.

[16] Asmit De et al. “FIXER: Flow integrity extensions for embed-

ded RISC-V”. In: IEEE Design, Automation & Test in Europe
Conference & Exhibition (DATE). 2019.

[17] RenDing et al. “Efficient Protection of Path-Sensitive Control

Security”. In: USENIX Security Symposium. 2017.

[18] Reza Mirzazade Farkhani et al. “PTAuth: Temporal Mem-

ory Safety via Robust Points-to Authentication”. In: USENIX
Security Symposium. 2021.

[19] Aurélien Francillon et al. “Code Injection Attacks on

Harvard-Architecture Devices”. In: ACM Conference on
Computer and Communications Security (CCS). 2008.

[20] Google. opentitan. 2022. url: https://opentitan.org/.
[21] Garrett Gu et al. No RISC No Reward: Return-Oriented Pro-

gramming in RISC-V. 2020. url: https://arxiv.org/abs/2007.
14995.

[22] Ralf Hund et al. “Return-Oriented Rootkits: Bypassing Kernel

Code Integrity Protection Mechanisms”. In: USENIX Security
Symposium. 2009.

[23] Kyriakos K Ispoglou et al. “Block oriented programming:

Automating data-only attacks”. In: ACM SIGSAC Conference
on Computer and Communications Security. 2018.

[24] Georges-Axel Jaloyan et al. “Return-Oriented Programming

on RISC-V”. In: ACM Asia Conference on Computer and Com-
munications Security (AsiaCCS). 2020.

[25] Mustakimur Rahman Khandaker et al. “Origin-sensitive con-

trol flow integrity”. In: USENIX Security Symposium. 2019.

[26] Sun Hyoung Kim et al. “Refining indirect call targets at the

binary level”. In: Symposium on Network and Distributed
System Security (NDSS). 2021.

[27] Tim Kornau. “Return oriented programming for the ARM

architecture”. MA thesis. Ruhr-University Bochum, 2009.

url: https : / / zynamics . com / downloads / kornau - tim --

diplomarbeit--rop.pdf.

[28] Dayeol Lee et al. “Keystone: An Open Framework for Ar-

chitecting Trusted Execution Environments”. In: European
Conference on Computer Systems (EuroSys). 2020.

[29] Hans Liljestrand et al. “PACStack: an Authenticated Call

Stack”. In: USENIX Security Symposium. 2021.

[30] Ted Marena. “RISC-V: high performance embedded SweRV™

core microarchitecture, performance and CHIPS Alliance”.

In:Western Digital Corporation (2019).

[31] Leonardo de Moura et al. “Z3: An Efficient SMT Solver”. In:

Tools and Algorithms for the Construction and Analysis of
Systems. 2008.

[32] nginx. 2019. url: https://nginx.org/.
[33] Vasilis Pappas et al. “Smashing the Gadgets: Hindering

Return-Oriented Programming Using In-place Code Ran-

domization”. In: IEEE Symposium on Security and Privacy
(S&P). 2012.

[34] Seonghwan Park et al. “Bratter: An Instruction Set Extension

for Forward Control-Flow Integrity in RISC-V”. In: Sensors
(2022).

[35] rizin. 2020. url: https://rizin.re/.
[36] Jonathan Salwan. ROPgadget Tool. 2011. url: http://shell-

storm.org/project/ROPgadget/.

[37] Moritz Schloegel et al. “Towards Automating Code-Reuse At-

tacks Using Synthesized Gadget Chains”. In: European Sym-
posium on Research in Computer Security (ESORICS). 2021.

[38] Felix Schuster et al. “Counterfeit Object-oriented Program-

ming: On the Difficulty of Preventing Code Reuse Attacks

in C++ Applications”. In: IEEE Symposium on Security and
Privacy (S&P). 2015.

[39] Edward J Schwartz et al. “Q: Exploit hardening made easy”.

In: USENIX Security Symposium. 2011.

[40] Hovav Shacham. “The Geometry of Innocent Flesh on the

Bone: Return-into-Libc without Function Calls (on the X86)”.

In: ACM Conference on Computer and Communications Secu-
rity (CCS). 2007.

[41] Yan Shoshitaishvili et al. “SoK: (State of) The Art of War: Of-

fensive Techniques in Binary Analysis”. In: IEEE Symposium
on Security and Privacy (S&P). 2016.

[42] Kevin Z. Snow et al. “Just-In-Time Code Reuse: On the Ef-

fectiveness of Fine-Grained Address Space Layout Random-

ization”. In: IEEE Symposium on Security and Privacy (S&P).
2013.

https://github.com/acama/xrop
https://github.com/danghvu/nginx-1.4.0
https://github.com/danghvu/nginx-1.4.0
https://www.ais.rub.de/media/trust/veroeffentlichungen/2010/07/21/ROP-without-Returns-on-ARM.pdf
https://www.ais.rub.de/media/trust/veroeffentlichungen/2010/07/21/ROP-without-Returns-on-ARM.pdf
https://www.ais.rub.de/media/trust/veroeffentlichungen/2010/07/21/ROP-without-Returns-on-ARM.pdf
https://opentitan.org/
https://arxiv.org/abs/2007.14995
https://arxiv.org/abs/2007.14995
https://zynamics.com/downloads/kornau-tim--diplomarbeit--rop.pdf
https://zynamics.com/downloads/kornau-tim--diplomarbeit--rop.pdf
https://nginx.org/
https://rizin.re/
http://shell-storm.org/project/ROPgadget/
http://shell-storm.org/project/ROPgadget/

RAID 2022, October 26–28, 2022, Limassol, Cyprus Cloosters et al.

[43] László Szekeres et al. “SoK: Eternal War in Memory”. In: IEEE
Symposium on Security and Privacy (S&P). 2013.

[44] angr Team. angrop. 2014. url: https://github.com/angr/

angrop/.

[45] PaX Team. PaX non-executable pages design & implementa-
tion. 2003. url: https://pax.grsecurity.net/docs/noexec.txt.

[46] Caroline Tice et al. “Enforcing Forward-Edge Control-Flow

Integrity in GCC & LLVM”. In: USENIX Security Symposium.

2014.

[47] Jo Van Bulck et al. “A Tale of Two Worlds: Assessing the

Vulnerability of Enclave Shielding Runtimes”. In: ACM Con-
ference on Computer and Communications Security (CCS).
2019.

[48] Victor Van der Veen et al. “Practical context-sensitive CFI”.

In: ACM SIGSAC Conference on Computer and Communica-
tions Security. 2015.

[49] Chao Zhang et al. “Practical Control Flow Integrity and

Randomization for Binary Executables”. In: IEEE Symposium
on Security and Privacy (S&P). 2013.

https://github.com/angr/angrop/
https://github.com/angr/angrop/
https://pax.grsecurity.net/docs/noexec.txt

	Abstract
	1 Introduction
	2 Background
	2.1 RISC-V Architecture
	2.2 ARM64 Architecture

	3 Challenges
	4 Threat Model
	5 RiscyROP
	5.1 Gadget Finding
	5.2 Gadget Chaining

	6 Evaluation
	6.1 Exploiting nginx: x86, RISC-V and ARM64
	6.2 Gadget Space Statistics
	6.3 Function Call Chain in the RISC-V libc
	6.4 Run time
	6.5 Related ROP assistance and chaining tools

	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments

