Projektgruppe WS 2018/2019

FETA

Fuzzer Evaluation Through
Automation

Michael Rodler
Sebastian Surminski

. UNIVERSITAT
Prof. Dr.-Ing. Lucas Davi DUISBURG

ESSEN

Offen im Denken

Juniorprofessur fur Informatik

https://www.syssec.wiwi.uni-due.de/

Complexity of Software Systems

Large attack surface for exploits

From Bug to Vulnerability

e C/C++ are plagued by memory safety violations (Bugs)
* Missing bounds-checking (spatial)
* Object lifetime violations (temporal)

* Memory Error — Memory Corruption — Arbitrary Code Execution
* Often memory errors can be abused to corrupt memory
* Code-pointers, data-pointers etc.
* Hijack program execution — Return-Oriented Programming (ROP)

Example: Buffer Overflow

Hijack Program
Execution

Vulnerability Discovery

S

White Hat Hacker

How to find the Inputs that
trigger Bugs?

Fuzzing

Brute-Force Vulnerability Discovery

Basic Fuzzer Workflow

No

<a

Yes

Exploitable?

Fuzzing — The Good, The Bag, ...

.. The Ugly

Inputs

Program

-

int magic = input();
if (magic == Oxdeadbeef) {
vulnerability();

¥
A

N

4

How long does it take?

It is not guaranteed to succeed

Probabilistic process

£f 42 43 f

£f 42 4b f
£f 42 £f 4b

ff 42 bf 4b

de ad be ef

Mutation

Research in Optimizing Fuzzing

mboehme / aflfast ®Waich~ 19 4 Unstar 211 | ¢ Fork 158

forked from mirrorer/afl

Coverage-based Greybox Fuzzing ¢

irected Greybox Fuzzing
aflgo / aflgo ®Watch~ 15 A Star 96 ¥ Fork 158
forked from mirrorer/afl

¢» Code Issues 7 Pull requests 0 Projects 0 Insights Angora: Efficient Fuzzing by Principled Search proe

Directed Greybox Fu:

o Chen zapore
California, Davis

Driller: Augmenting i(‘d(n'is.edu L
FUZZing Through Selective Symb01ic Execution ®Watch- 37 &Unstar 36 ¥ Fork 1

Ji Projects 0 Wik Insights

shellphish / driller ©Watch~ 40 4 Unstar 340 ¥ Fork 86
in anal of Angora is to increase branch coverage

¢» Code Issues 14 Pu Jdtion.

VUzzer: Application-aware Evolutionary Fuzzing

T-Fuzz: fuzzing by program transformation

Cumar!, Lucian Cojocar*T, (
tience Institute, Vrije Universi vusec / vuzzer ©Watch~ 36 % Unstar 205 ¥Fork 80
Hui Peng Yan Shoshitaishvili Mathias Payer tojocar>>@vu.nl; <giuffrida,he
Purdue University Arizona State University Purdue University asterdam Department of Inforn <> Code Issues 6 Pull requests 0 Projects 0 Wiki Insights
peng124 @purdue.edu yans@asu.edu mathias.payer @nebelwelt.net Institute of Information Technc

Qoin.ashish.kumar> @research No description, website, or topics provided.

http://lcamtuf.coredump.cx/afl/

Optimized Fuzzing

Program Inputs Mutation
N ff 42 43 ff

fuint32_t magic = input(); New

if (magic == Oxdeadbeef) { Program
vulnerability(); Path de |42 4b ff

[Ty all possible bytes at0 |

- [LFixbyteo |

\} y discovered! -
[Ty all possible bytes ot 1 |

-~ [Lrixbyter |

[.]

'de |42 4b bf

/uintS_t magic[4] = input(); \ mm
if (magic[@] == oxde) { <

if (magic[1l] == Oxad) { <=
if (magic[2] == oxbe) {
if (magic[3] == oOxef) { ‘

vulnerability()
Q}}} /

Reaching this is feasible now.

In fact it is now even fast.

11

Research Question:

Fvaluation and Comparison of
State-of-the-Art Fuzzing
Approaches

Goals and Features

1. Automated Setup of Fuzzing Instances
2. Sharing of Generated Test-Cases

3. Comparison and Evaluation of Fuzzers
4. Combine all Fuzzers against one Target

5. Report Bugs and Write PoC Exploits

13

PG Outline

Lectures — The Basics

* Program Exploitation: ,,From bugs to vulnerabilities to exploits”
* Types of vulnerabilities (e.g. buffer overflow, use-after-free)
* Practical exploit development

* Memory Error Detection
* Hardening and Debugging Tools (AddressSanitizer, valgrind, etc.)
* Root-cause analysis

* Basics of Program Analysis and Transformation
* E.g. symbolic/concolic execution
e Useful for understanding some optimized Fuzzers

15

Seminar Topics — The Fuzzers

e Summarize relevant literature
* Presentation
* Related work in final report

* Possible Topics:

* Improved Fuzzing Search Strategies
[Chen and Chen, IEEE S&P 2018], [B6hme et al., ACM SIGSAC 2016]

* Improving Fuzzing with Static Program Analysis
[Rawar et al., NDSS 2017], [Peng et al., IEEE S&P 2018]

* Hybrid Fuzzing and Symbolic Execution
[Stephens et al., NDSS 2016], [Yun et al., USENIX Security 2018]

* Fuzzing Embedded Systems
[Chen et al., NDSS 2018], [Muench et al., NDSS 2018]

Implementation

* Project Management
* |ssues and Milestones
* Everything in git

* Implementation
* Choose automation framework
* Choose/Create Data-Sets for Evaluation
» Setup and automate Experiments
* Analyse results & write PoC exploits

17

Documentation

* Goal: Publishable project report!
e Continuous writing and feedback loop

e Related work
* i.e. the Fuzzers explained
e Comparison of approaches

* Description of Experiments
* Data-sets
* Statistics

* PoC Exploits

18

last uniq
cycle pro
now proce

paths timed

hang
ress

american fuzzy lop 0.47b (readpng)

: 0 days, O hrs, 4 min,
: 0 days, 0 hrs, 0 min,
: none seen yet

stage progress

1ge execs
total execs
exec speed

trying :
: 0/9990 (0.00%)
: 654k

: 0 days, O hrs, 1 min,

sing : 38 (19.49%) ‘
out : 0 (0.00%) C
interest 32/8 f

t

2306/sec

fuzzing strategy yie

it flips
byt flips
A Tics
known 1ints
havoc

trim :

1ds .
88/14.4k, 6/14.4k, 6/14.4

: 0/1804, 0/1786, 1/1750

31/126k, 3/45.6k, 1/17.8k
1/15.8k, 4/65.8k, 6/78.2k
34/254k, 0/0

2876 B/931 (61.45% gain)

findings

43 sec
26 sec

51 sec

map coverage

map de
ount co

avored pat
new edge
otal cra

total hangs

k

overall results
cycles done : 0

total : 195
uniq cr : 0
uniq 1

1217 (7.43%)
2.55 bits/tuple

pth

128 (65.64%)
: 85 (43.59%)
: 0 (0 unique)

1 (1 unique)
path geometry
levels : 3
pending : 178
pend fav : 114
imported : 0O
variable : 0

latent : O

Questions?

19

References

L. Sze8ker35, M. Payer, T. Wei, and D. Song, “SoK: Eternal War in Memory,” in 2013 IEEE Symposium on Security and Privacy, 2013,
pp. 48—62.

M. Bohme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed Greybox Fuzzing,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, 2017, pp. 2329-2344.

M. Muench, J. Stijohann, F. Kargl, A. Francillon, and D. Balzarotti, “What You Corrupt Is Not What You Crash: Challenges in Fuzzing
Embedded Devices,” in Proceedings 2018 Network and Distributed System Security Symposium, San Diego, CA, 2018.

P. Chen and H. Chen, “Angora: Efficient Fuzzing by Principled Search,” arXiv [cs.CR], 04-Mar-2018.
H. Peng, Y. Shoshitaishvili, and M. Payer, “T-Fuzz: fuzzing by program transformation.”
B. Shastry et al., “Static Program Analysis as a Fuzzing Aid,” in Research in Attacks, Intrusions, and Defenses, 2017, pp. 26—47.

S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos, “Vuzzer: Application-aware evolutionary fuzzing,” in Proceedings of
the Network and Distributed System Security Symposium (NDSS), 2017.

N. Stephens et al., “Driller: Augmenting Fuzzing Through Selective Symbolic Execution,” in NDSS, 2016, vol. 16, pp. 1-16.

J. Chen et al., “loTFuzzer: Discovering Memory Corruptions in loT Through App-based Fuzzing,” in Proceedings 2018 Network and
Distributed System Security Symposium, San Diego, CA, 2018.

l. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing,” in 27th USENIX
Security Symposium (USENIX Security 18), 2018.

20

