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Complexity of Software Systems

Large attack surface for exploits



From Bug to Vulnerability

e C/C++ are plagued by memory safety violations (Bugs)
* Missing bounds-checking (spatial)
* Object lifetime violations (temporal)

* Memory Error — Memory Corruption — Arbitrary Code Execution
* Often memory errors can be abused to corrupt memory
* Code-pointers, data-pointers etc.
* Hijack program execution — Return-Oriented Programming (ROP)



Example: Buffer Overflow

Hijack Program
Execution




Vulnerability Discovery
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White Hat Hacker

How to find the Inputs that
trigger Bugs?



Fuzzing

Brute-Force Vulnerability Discovery



Basic Fuzzer Workflow
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Fuzzing — The Good, The Bag, ...




.. The Ugly

Inputs

Program
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int magic = input();
if (magic == Oxdeadbeef) {
vulnerability();
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How long does it take?

It is not guaranteed to succeed

Probabilistic process
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Research in Optimizing Fuzzing
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Optimized Fuzzing

Program Inputs Mutation
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Reaching this is feasible now.

In fact it is now even fast.

11



Research Question:

Fvaluation and Comparison of
State-of-the-Art Fuzzing
Approaches



Goals and Features

1. Automated Setup of Fuzzing Instances
2. Sharing of Generated Test-Cases

3. Comparison and Evaluation of Fuzzers
4. Combine all Fuzzers against one Target

5. Report Bugs and Write PoC Exploits
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PG Outline




Lectures — The Basics

* Program Exploitation: ,,From bugs to vulnerabilities to exploits”
* Types of vulnerabilities (e.g. buffer overflow, use-after-free)
* Practical exploit development

* Memory Error Detection
* Hardening and Debugging Tools (AddressSanitizer, valgrind, etc.)
* Root-cause analysis

* Basics of Program Analysis and Transformation
* E.g. symbolic/concolic execution
e Useful for understanding some optimized Fuzzers
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Seminar Topics — The Fuzzers

e Summarize relevant literature
* Presentation
* Related work in final report

* Possible Topics:

* Improved Fuzzing Search Strategies
[Chen and Chen, IEEE S&P 2018], [B6hme et al., ACM SIGSAC 2016]

* Improving Fuzzing with Static Program Analysis
[Rawar et al., NDSS 2017], [Peng et al., IEEE S&P 2018]

* Hybrid Fuzzing and Symbolic Execution
[Stephens et al., NDSS 2016], [Yun et al., USENIX Security 2018]

* Fuzzing Embedded Systems
[Chen et al., NDSS 2018], [Muench et al., NDSS 2018]



Implementation

* Project Management
* |ssues and Milestones
* Everything in git

* Implementation
* Choose automation framework
* Choose/Create Data-Sets for Evaluation
» Setup and automate Experiments
* Analyse results & write PoC exploits
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Documentation

* Goal: Publishable project report!
e Continuous writing and feedback loop

e Related work
* i.e. the Fuzzers explained
e Comparison of approaches

* Description of Experiments
* Data-sets
* Statistics

* PoC Exploits
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